Mechanical testing for the biomechanical engineer : a practical guide / Marnie M. Saunders.

Saved in:
Bibliographic Details
Online Access: Full Text (via Morgan & Claypool)
Main Author: Saunders, Marnie M. (Author)
Other title:Title from web site: Mechanical testing for the biomechanics engineer.
Format: eBook
Language:English
Published: San Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool, 2015.
Series:Synthesis lectures on biomedical engineering (Online) ; # 54.
Subjects:
Table of Contents:
  • 1. Fundamentals
  • 1.1 Basic mechanics
  • 1.1.1 Mechanical properties
  • 1.1.2 Loading modes
  • 1.1.3 Material properties and degree of anisotropy
  • 1.1.4 Fracture and fatigue
  • 1.1.5 Viscoelasticity
  • 1.1.6 Complex stress states
  • 1.1.7 Significant digits
  • 2. Accuracy and measurement tools
  • 2.1 Accuracy and precision
  • 2.2 Measurement tools
  • 2.2.1 Steel rule
  • 2.2.2 Calipers
  • 2.2.3 Micrometers
  • 2.2.4 Vernier scales
  • 2.2.5 Additional measurement equipment
  • 2.2.6 Handling issues
  • 2.2.7 A practical note
  • 3. Design
  • 3.1 Mechanical drawing
  • 3.2 Machining
  • 3.2.1 Machine shop safety
  • 3.2.2 Stock materials
  • 3.2.3 Design layout
  • 3.2.4 The equipment
  • 3.2.5 Threading
  • 3.2.6 Fixture fabrication example
  • 4. Testing machine design and fabrication
  • 4.1 Mechanical testing
  • 4.1.1 Force measurement
  • 4.1.2 Displacement measurement
  • 4.2 Fabrication of a simple loading platform
  • 4.2.1 Mechanical testing platforms
  • 4.2.2 Development of a simple platform
  • 4.2.3 Additional linear applications
  • 4.3 Expanding the simple platform beyond axial motion
  • 4.3.1 Torsion
  • 5. Fixture design and applications
  • 5.1 Test fixtures
  • 5.1.1 Design considerations
  • 5.2 Fixture design and development
  • 5.2.1 Bending fixtures
  • 5.2.2 Tension fixtures
  • 5.2.3 Compression fixtures
  • 5.2.4 Torsion fixtures
  • 5.2.5 Shear applications
  • 5.2.6 Miscellaneous holders
  • 5.2.7 Repurposing existing fixtures
  • 6. Additional considerations in a biomechanics test
  • 6.1 Additional design considerations
  • 6.1.1 Know the literature
  • 6.1.2 ASTM standards
  • 6.1.3 Model selection
  • 6.1.4 Tissue care
  • 6.1.5 Equipment
  • 6.1.6 Specimen attachment
  • 6.1.7 Potting media
  • 6.1.8 Potting alignment
  • 6.1.9 Potting and testing molds
  • 6.1.10 Removing molds
  • 6.1.11 Small-scale specimen preparation
  • 6.1.12 Material selection
  • 6.1.13 Data analysis
  • 7. Laboratory examples and additional equations
  • 8. Appendices: practical orthopaedic biomechanics problems
  • 8.1 Example 1: Implant design: prototype, benchtop analysis
  • 8.1.1 The problem
  • 8.1.2 Goal
  • 8.1.3 Solution
  • 8.1.4 Method
  • 8.1.5 Key study concepts
  • 8.2 Example 2: Cadaveric comparison of allograft fixation techniques
  • 8.2.1 The problem
  • 8.2.2 Goal
  • 8.2.3 Solution
  • 8.2.4 Method
  • 8.2.5 Results
  • 8.2.6 Study limitations
  • 8.2.7 Key study concepts
  • 8.3 Example 3: Bone removal location effect in autografting: assessing fracture risk
  • 8.3.1 The problem
  • 8.3.2 Goal
  • 8.3.3 Method
  • 8.3.4 Key study concepts
  • 8.4 Example 4: Diaphyseal femur fracture after proximal and distal fixation
  • 8.4.1 The problem
  • 8.4.2 Goal
  • 8.4.3 Method
  • 8.4.4 The solution
  • 8.4.5 Results
  • 8.4.6 Study limitations
  • 8.4.7 Key study concepts
  • 8.5 Example 5: Cellular biomechanics: mechanical platforms for mechanobiology
  • 8.5.1 The need
  • 8.5.2 Method
  • Bibliography
  • Author biography.