Canonical equational proofs [electronic resource] / Leo Bachmair.

Equations occur in many computer applications, such as symbolic compu℗Ư tation, functional programming, abstract data type specifications, program verification, program synthesis, and automated theorem proving. Rewrite systems are directed equations used to compute by replacing subterms in a given...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Bachmair, Leo
Format: Electronic eBook
Language:English
Published: Boston : Birkhäuser, 1991.
Series:Progress in theoretical computer science.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b7981965
006 m o d
007 cr |||||||||||
008 100315s1991 maua ob 001 0 eng d
005 20240418143328.3
019 |a 609161116  |a 853271541  |a 934972697  |a 1001492425  |a 1038412759  |a 1039499746  |a 1086472984 
020 |a 9781468471182  |q (electronic bk.) 
020 |a 146847118X  |q (electronic bk.) 
020 |z 0817635556  |q (alk. paper) 
020 |z 9780817635558  |q (alk. paper) 
020 |z 3764335556  |q (alk. paper) 
020 |z 9783764335557  |q (alk. paper) 
024 7 |a 10.1007/978-1-4684-7118-2 
035 |a (OCoLC)spr555958937 
035 |a (OCoLC)555958937  |z (OCoLC)609161116  |z (OCoLC)853271541  |z (OCoLC)934972697  |z (OCoLC)1001492425  |z (OCoLC)1038412759  |z (OCoLC)1039499746  |z (OCoLC)1086472984 
037 |a spr978-1-4684-7118-2 
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d AU@  |d OCLCO  |d GW5XE  |d OCLCO  |d OCLCF  |d UA@  |d AZU  |d OCLCQ  |d EBLCP  |d OCLCQ  |d YDX  |d UAB  |d OCLCQ  |d LEAUB  |d OCLCQ 
042 |a dlr 
049 |a GWRE 
050 4 |a QA267  |b .B32 1991 
100 1 |a Bachmair, Leo.  |0 http://id.loc.gov/authorities/names/n88672045  |1 http://isni.org/isni/0000000081962295. 
245 1 0 |a Canonical equational proofs  |h [electronic resource] /  |c Leo Bachmair. 
260 |a Boston :  |b Birkhäuser,  |c 1991. 
300 |a 1 online resource (x, 135 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a text file. 
347 |b PDF. 
490 1 |a Progress in theoretical computer science. 
500 |a Based in part on author's thesis (Ph. D.)--University of Illinois at Urbana-Champaign, 1987. 
504 |a Includes bibliographical references (pages 117-127) and index. 
505 0 |a 1 Equational Proofs -- 1.1. Introduction -- 1.2. Terms -- 1.3. Equations -- 1.4. Orderings -- 1.5. Proofs -- 2 Standard Completion -- 2.1. Basic Completion -- 2.2. Proof Transformation -- 2.3. Proof Simplification -- 2.4. Fairness and Correctness -- 2.5. Standard Completion -- 2.6. Critical Pair Criteria -- 3 Extended Completion -- 3.1. Rewriting Modulo a Congruence -- 3.2. The Left-Linear Rule Method -- 3.3. Church-Rosser Systems -- 3.4. Extended Completion -- 3.5. The Extended Rule Method -- 3.6. Associative-Commutative Completion -- 3.7. The Protected Rule Method -- 3.8. Extended Critical Pair Criteria -- 4 Ordered Completion -- 4.1. Ordered Completion -- 4.2. Construction of Convergent Rewrite Systems -- 4.3. Refutational Theorem Proving -- 4.4. Horn Clauses with Equality -- 5 Proof by Consistency -- 5.1. Consistency and Ground Reducibility -- 5.2. Proof by Consistency -- 5.3. Refutation Completeness -- 5.4. Covering Sets. 
520 |a Equations occur in many computer applications, such as symbolic compu℗Ư tation, functional programming, abstract data type specifications, program verification, program synthesis, and automated theorem proving. Rewrite systems are directed equations used to compute by replacing subterms in a given formula by equal terms until a simplest form possible, called a normal form, is obtained. The theory of rewriting is concerned with the compu℗Ư tation of normal forms. We shall study the use of rewrite techniques for reasoning about equations. Reasoning about equations may, for instance, involve deciding whether an equation is a logical consequence of a given set of equational axioms. Convergent rewrite systems are those for which the rewriting process de℗Ư fines unique normal forms. They can be thought of as non-deterministic functional programs and provide reasonably efficient decision procedures for the underlying equational theories. The Knuth-Bendix completion method provides a means of testing for convergence and can often be used to con℗Ư struct convergent rewrite systems from non-convergent ones. We develop a proof-theoretic framework for studying completion and related rewrite℗Ư based proof procedures. We shall view theorem provers as proof transformation procedures, so as to express their essential properties as proof normalization theorems. 
588 0 |a Print version record. 
650 0 |a Rewriting systems (Computer science)  |0 http://id.loc.gov/authorities/subjects/sh87003035. 
650 0 |a Equations.  |0 http://id.loc.gov/authorities/subjects/sh85044510. 
650 7 |a Equations.  |2 fast  |0 (OCoLC)fst00914489. 
650 7 |a Rewriting systems (Computer science)  |2 fast  |0 (OCoLC)fst01096809. 
776 0 8 |i Print version:  |a Bachmair, Leo.  |t Canonical equational proofs.  |d Boston : Birkhäuser, 1991  |w (DLC) 91011461  |w (OCoLC)23768554. 
830 0 |a Progress in theoretical computer science.  |0 http://id.loc.gov/authorities/names/n91020051. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-1-4684-7118-2  |z Full Text (via Springer) 
907 |a .b79819655  |b 08-02-21  |c 06-01-15 
998 |a web  |b 07-31-21  |c b  |d b   |e -  |f eng  |g mau  |h 0  |i 1 
907 |a .b79819655  |b 08-02-21  |c 06-01-15 
944 |a MARS - RDA ENRICHED 
956 |a Computer Science 
915 |a - 
956 |a Springer e-books: Archive 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Computer Science 
999 f f |i cee77e40-e0ab-5a61-b1b5-2bf79dc226ac  |s 1f2cca03-88c7-5e4f-ba4a-8a65027a89a4 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA267 .B32 1991  |h Library of Congress classification  |i Ebooks, Prospector  |n 1