Statistical estimation--asymptotic theory [electronic resource] / I.A. Ibragimov, R.Z. Hasʹminskiĭ ; translated by Samuel Kotz.

When certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2 ..., X n be ind...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Ibragimov, I. A. (Ilʹdar Abdulovich)
Other Authors: Khasʹminskiĭ, R. Z. (Rafail Zalmanovich)
Other title:Asimptoticheskai︠a︡ teorii︠a︡ ot︠s︡enivanii︠a︡. English
Format: Electronic eBook
Language:English
Russian
Published: New York : Springer-Verlag, ©1981.
Series:Applications of mathematics ; 16.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b7986375
006 m o d
007 cr |||||||||||
008 110315s1981 nyu ob 001 0 eng d
005 20240418143734.5
019 |a 1001491727 
020 |a 9781489900272  |q (electronic bk.) 
020 |a 1489900276  |q (electronic bk.) 
020 |a 1489900292  |q (print) 
020 |a 9781489900296  |q (print) 
020 |z 9781489900296 
020 |z 0387905235 
020 |z 9780387905235 
024 7 |a 10.1007/978-1-4899-0027-2 
035 |a (OCoLC)spr707452386 
035 |a (OCoLC)707452386  |z (OCoLC)1001491727 
037 |a spr978-1-4899-0027-2 
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d OCLCF  |d GW5XE  |d UA@  |d COO  |d OCLCQ  |d UAB  |d OCLCQ  |d U3W  |d AU@  |d OCLCQ 
041 1 |a eng  |h rus 
042 |a dlr 
049 |a GWRE 
050 4 |a QA355  |b .I2613 1981eb 
100 1 |a Ibragimov, I. A.  |q (Ilʹdar Abdulovich)  |0 http://id.loc.gov/authorities/names/n81008009  |1 http://isni.org/isni/0000000109489832. 
240 1 0 |a Asimptoticheskai︠a︡ teorii︠a︡ ot︠s︡enivanii︠a︡.  |l English  |0 http://id.loc.gov/authorities/names/n81005332. 
245 1 0 |a Statistical estimation--asymptotic theory  |h [electronic resource] /  |c I.A. Ibragimov, R.Z. Hasʹminskiĭ ; translated by Samuel Kotz. 
260 |a New York :  |b Springer-Verlag,  |c ©1981. 
300 |a 1 online resource (vii, 403 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Applications of mathematics ;  |v 16. 
504 |a Includes bibliographical references (pages 395-400) and index. 
505 0 |a Basic Notation -- The Problem of Statistical Estimation -- Local Asymptotic Normality of Families of Distributions -- Properties of Estimators in the Regular Case -- Some Applications to Nonparametric Estimation -- Independent Identically Distributed Observations. Densities with Jumps -- Independent Identically Distributed Observations. Classification of Singularities -- Several Estimation Problems in a Gaussian White Noise. 
520 |a When certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2 ..., X n be independent observations with the joint probability density!(x, O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:(X b ..., X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> (), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects. 
588 0 |a Print version record. 
650 0 |a Asymptotic expansions.  |0 http://id.loc.gov/authorities/subjects/sh85009056. 
650 7 |a Asymptotic expansions.  |2 fast  |0 (OCoLC)fst00819868. 
700 1 |a Khasʹminskiĭ, R. Z.  |q (Rafail Zalmanovich)  |0 http://id.loc.gov/authorities/names/n81008010  |1 http://isni.org/isni/000000036022763X. 
776 0 8 |i Print version:  |a Ibragimov, I.A. (Ilʹdar Abdulovich).  |s Asimptoticheskai︠a︡ teorii︠a︡ ot︠s︡enivanii︠a︡. English.  |t Statistical estimation--asymptotic theory.  |d New York : Springer-Verlag, ©1981  |w (DLC) 80028541  |w (OCoLC)7206564. 
830 0 |a Applications of mathematics ;  |v 16.  |0 http://id.loc.gov/authorities/names/n42002583. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-1-4899-0027-2  |z Full Text (via Springer) 
907 |a .b79863759  |b 10-05-21  |c 06-01-15 
998 |a web  |b 09-30-21  |c b  |d b   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b79863759  |b 10-04-21  |c 06-01-15 
944 |a MARS - RDA ENRICHED 
956 |a Mathematics 
915 |a - 
956 |a Springer e-books: Archive 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
999 f f |i f2864fae-5233-5f6d-8b3e-5a08391aa6dc  |s 7a98a6f5-498e-56d7-a425-32747d2457fd 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA355 .I2613 1981eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1