Spin Eigenfunctions : Construction and Use / by Ruben Pauncz.

1. Introduction.- 1.1. Electronic States with Definite Multiplicities.- 1.2. Basic Facts with Respect to the Spin.- 1.3. Spin Operators and Functions for One Electron.- 1.4. Addition Theorem of Angular Momenta.- References.- 2. Construction of Spin Eigenfunctions from the Products of One-Electron Sp...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Pauncz, Ruben
Format: eBook
Language:English
Published: Boston, MA : Springer US, 1979.
Subjects:
Table of Contents:
  • 1. Introduction
  • 2. Construction of Spin Eigenfunctions from the Products of One-Electron Spin Functions
  • 3. Construction of Spin Eigenfunctions from the Products of Two-Electron Spin Eigenfunctions
  • 4. Construction of Spin Eigenfunctions by the Projection Operator Method
  • 5. Spin-Paired Spin Eigenfunctions
  • 6. Basic Notions of the Theory of the Symmetric Group
  • 7. Representations of the Symmetric Group Generated by the Spin Eigenfunctions
  • 8. Representations of the Symmetric Group Generated by the Projected Spin Functions and Valence Bond Functions
  • 9. Combination of Spatial and Spin Functions; Calculation of the Matrix Elements of Operators
  • 10. Calculation of the Matrix Elements of the Hamiltonian; Orthogonal Spin Functions
  • 11. Calculation of the Matrix Elements of the Hamiltonian; Nonorthogonal Spin Functions
  • 12. Spin-Free Quantum Chemistry
  • 13. Matrix Elements of the Hamiltonian and the Representation of the Unitary Group
  • Appendix 1. Some Basic Algebraic Notions
  • A.1.1. Introduction
  • A.1.2. Frobenius or Group Algebra; Convolution Algebra
  • A.1.2.1. Invariant Mean
  • A.1.2.2. Frobenius or Group Algebra
  • A.1.2.3. Convolution Algebra
  • A.1.3. Some Algebraic Notions
  • A.1.4. The Centrum of the Algebra
  • A.1.5. Irreducible Representations; Schur's Lemma
  • A.1.6. The Matric Basis
  • A.1.7. Symmetry Adaptation
  • A.1.8. Wigner-Eckart Theorem
  • References
  • Appendix 2. The Coset Representation
  • A.2.1. Introduction
  • A.2.2. The Character of an Element g in the Coset Representation.
  • Appendix 3. Double Coset
  • A.3.1. The Double Coset Decomposition
  • A.3.2. The Number of Elements in a Double Coset
  • Appendix 4. The Method of Spinor Invariants
  • A.4.1. Spinors and Their Transformation Properties
  • A.4.2. The Method of Spinor Invariants
  • A.4.3. Construction of the Genealogical Spin Functions by the Method of Spinor Invariants
  • A.4.4. Normalization Factors
  • A.4.5. Construction of the Serber Functions by the Method of Spinor Invariants
  • A.4.6. Singlet Functions as Spinor Invariants
  • References
  • A.5.1. The Formalism of Second Quantization
  • A.5.2. Representation of the Spin Operators in the Second-Quantization Formalism
  • A.5.3. Review of the Papers That Use the Second-Quantization Formalism for the Construction of Spin Eigenfunctions
  • A.5.3.1. Genealogical Construction
  • A.5.3.2. Projection Operator Method
  • A.5.3.3. Valence Bond Method
  • A.5.3.4. The Occupation-Branching-Number Representation
  • References
  • Appendix 6. Table of Sanibel Coefficients
  • Reference
  • Author Index.