Introduction to Coding Theory / by J.H. Lint.

The first edition of this book was very well received and is considered to be one of the classical introductions to the subject of discrete mathematics- a field that is still growing in importance as the need for mathematiciansand computer scientists in industry continues to grow. The opening chapte...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Lint, J. H.
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint : Springer, 1992.
Edition:Second edition.
Series:Graduate texts in mathematics ; 86.
Subjects:

MARC

LEADER 00000cam a2200000Ma 4500
001 b7993488
006 m o d
007 cr |||||||||||
008 121227s1992 gw o 000 0 eng d
005 20240418144913.2
019 |a 934994957  |a 936317423 
020 |a 9783662001745  |q (electronic bk.) 
020 |a 3662001748  |q (electronic bk.) 
020 |a 9783662001769  |q (print) 
020 |a 3662001764  |q (print) 
024 7 |a 10.1007/978-3-662-00174-5 
035 |a (OCoLC)spr840302404 
035 |a (OCoLC)840302404  |z (OCoLC)934994957  |z (OCoLC)936317423 
037 |a spr10.1007/978-3-662-00174-5 
040 |a I9W  |b eng  |e pn  |c I9W  |d OCLCO  |d OCLCQ  |d UV0  |d OCLCO  |d GW5XE  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ 
049 |a GWRE 
050 4 |a QA241-247.5 
100 1 |a Lint, J. H. 
245 1 0 |a Introduction to Coding Theory /  |c by J.H. Lint. 
250 |a Second edition. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint :  |b Springer,  |c 1992. 
300 |a 1 online resource (XII, 186 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Graduate Texts in Mathematics, 0072-5285 ;  |v 86. 
505 0 |a 1 Mathematical Background -- 1.1. Algebra -- 1.2. Krawtchouk Polynomials -- 1.3. Combinatorial Theory -- 1.4. Probability Theory -- 2 Shannon's Theorem -- 2.1. Introduction -- 2.2. Shannon's Theorem -- 2.3. Comments -- 2.4. Problems -- 3 Linear Codes -- 3.1. Block Codes -- 3.2. Linear Codes -- 3.3. Hamming Codes -- 3.4. Majority Logic Decoding -- 3.5. Weight Enumerators -- 3.6. Comments -- 3.7. Problems -- 4 Some Good Codes -- 4.1. Hadamard Codes and Generalizations -- 4.2. The Binary Golay Code -- 4.3. The Ternary Golay Code -- 4.4. Constructing Codes from Other Codes -- 4.5. Reed-Muller Codes -- 4.6. Kerdock Codes -- 4.7. Comments -- 4.8. Problems -- 5 Bounds on Codes -- 5.1. Introduction: The Gilbert Bound -- 5.2. Upper Bounds -- 5.3. The Linear Programming Bound -- 5.4. Comments -- 5.5. Problems -- 6 Cyclic Codes -- 6.1. Definitions -- 6.2. Generator Matrix and Check Polynomial -- 6.3. Zeros of a Cyclic Code -- 6.4. The Idempotent of a Cyclic Code -- 6.5. Other Representations of Cyclic Codes -- 6.6. BCH Codes -- 6.7. Decoding BCH Codes -- 6.8. Reed-Solomon Codes and Algebraic Geometry Codes -- 6.9. Quadratic Residue Codes -- 6.10. Binary Cyclic codes of length 2n (n odd) -- 6.11. Comments -- 6.12. Problems -- 7 Perfect Codes and Uniformly Packed Codes -- 7.1. Lloyd's Theorem -- 7.2. The Characteristic Polynomial of a Code -- 7.3. Uniformly Packed Codes -- 7.4. Examples of Uniformly Packed Codes -- 7.5. Nonexistence Theorems -- 7.6. Comments -- 7.7. Problems -- 8 Goppa Codes -- 8.1. Motivation -- 8.2. Goppa Codes -- 8.3. The Minimum Distance of Goppa Codes -- 8.4. Asymptotic Behaviour of Goppa Codes -- 8.5. Decoding Goppa Codes -- 8.6. Generalized BCH Codes -- 8.7. Comments -- 8.8. Problems -- 9 Asymptotically Good Algebraic Codes -- 9.1. A Simple Nonconstructive Example -- 9.2. Justesen Codes -- 9.3. Comments -- 9.4. Problems -- 10 Arithmetic Codes -- 10.1. AN Codes -- 10.2. The Arithmetic and Modular Weight -- 10.3. Mandelbaum-Barrows Codes -- 10.4. Comments -- 10.5. Problems -- 11 Convolutional Codes -- 11.1. Introduction -- 11.2. Decoding of Convolutional Codes -- 11.3. An Analog of the Gilbert Bound for Some Convolutional Codes -- 11.4. Construction of Convolutional Codes from Cyclic Block Codes -- 11.5. Automorphisms of Convolutional Codes -- 11.6. Comments -- 11.7. Problems -- Hints and Solutions to Problems -- References. 
520 |a The first edition of this book was very well received and is considered to be one of the classical introductions to the subject of discrete mathematics- a field that is still growing in importance as the need for mathematiciansand computer scientists in industry continues to grow. The opening chapter is a memory-refresher reviewing the prerequisite mathematical knowledge. The body of the book contains two parts (five chapters each): a rigorous mathematically oriented first course in coding theory, followedby introductions to special topics; these can be used as a second semester, as supplementary reading, or as preparation for studying the literature. Among the special features are chapters on arithmetic codes and convolutional codes, and exercises with complete solutions. 
650 0 |a Mathematics. 
650 0 |a Combinatorial analysis. 
650 0 |a Number theory. 
650 7 |a Combinatorial analysis.  |2 fast  |0 (OCoLC)fst00868961. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163. 
650 7 |a Number theory.  |2 fast  |0 (OCoLC)fst01041214. 
776 0 8 |i Printed edition:  |z 9783662001769. 
830 0 |a Graduate texts in mathematics ;  |v 86. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-662-00174-5  |z Full Text (via Springer) 
907 |a .b79934882  |b 07-02-19  |c 06-01-15 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g gw   |h 0  |i 1 
907 |a .b79934882  |b 05-09-17  |c 06-01-15 
915 |a M 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Mathematics 
956 |a Springer e-books: Archive 
999 f f |i 58702907-e522-5fba-8850-0d27398513c6  |s a031c329-b63e-5c2b-b760-bd56670aa79d 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA241-247.5  |h Library of Congress classification  |i Ebooks, Prospector  |n 1