Representations of Compact Lie Groups / by Theodor Bröcker, Tammo Dieck.

This book is an introduction to the representation theory of compact Lie groups, following Hermann Weyl's original approach. Although the authors discuss all aspects of finite-dimensional Lie theory, the emphasis throughout the book is on the groups themselves. The presentation is consequently...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Bröcker, Theodor
Other Authors: Dieck, Tammo
Format: eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 1985.
Series:Graduate texts in mathematics ; 98.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b8004016
006 m o d
007 cr |||||||||||
008 130125s1985 gw o 000 0 eng
005 20240418145606.3
019 |a 934999599  |a 936320043 
020 |a 9783662129180  |q (electronic bk.) 
020 |a 3662129183  |q (electronic bk.) 
020 |z 9783642057250 
020 |z 364205725X 
020 |z 3662129183 
024 7 |a 10.1007/978-3-662-12918-0 
035 |a (OCoLC)spr851389440 
035 |a (OCoLC)851389440  |z (OCoLC)934999599  |z (OCoLC)936320043 
037 |a spr10.1007/978-3-662-12918-0 
040 |a AU@  |b eng  |e pn  |c AU@  |d GW5XE  |d OCLCQ  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ 
049 |a GWRE 
050 4 |a QA387 
100 1 |a Bröcker, Theodor. 
245 1 0 |a Representations of Compact Lie Groups /  |c by Theodor Bröcker, Tammo Dieck. 
260 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 1985. 
300 |a 1 online resource (x, 316 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 98. 
505 0 |a I Lie Groups and Lie Algebras -- II Elementary Representation Theory -- III Representative Functions -- IV The Maximal Torus of a Compact Lie Group -- V Root Systems -- VI Irreducible Characters and Weights -- Symbol Index. 
520 |a This book is an introduction to the representation theory of compact Lie groups, following Hermann Weyl's original approach. Although the authors discuss all aspects of finite-dimensional Lie theory, the emphasis throughout the book is on the groups themselves. The presentation is consequently more geometric and analytic than algebraic in nature. The central results, culminating the Weyl character formula, are reached directly and quickly, and they appear in forms suitable for applications to physics and geometry. This book is a good reference and a source of explicit computations, for physicists and mathematicians. Each section is supplemented by a wide range of exercices, and geometric ideas are illustrated with the help of 24 figures. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163. 
650 7 |a Topological groups.  |2 fast  |0 (OCoLC)fst01152684. 
700 1 |a Dieck, Tammo. 
776 0 8 |i Print version:  |z 9783642057250. 
830 0 |a Graduate texts in mathematics ;  |v 98. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-662-12918-0  |z Full Text (via Springer) 
907 |a .b80040160  |b 07-02-19  |c 06-01-15 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g gw   |h 0  |i 1 
907 |a .b80040160  |b 05-09-17  |c 06-01-15 
915 |a M 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Mathematics 
956 |a Springer e-books: Archive 
999 f f |i 45331bca-1cdf-5417-ac69-d6b113b5952e  |s 12a44b19-330e-59ed-9a5c-66d203282eb2 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA387  |h Library of Congress classification  |i Ebooks, Prospector  |n 1