The Boundary Value Problems of Mathematical Physics / by O.A. Ladyzhenskaya.

In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Ladyzhenskai︠a︡, O. A. (Olʹga Aleksandrovna)
Format: eBook
Language:English
Published: New York, NY : Springer New York, 1985.
Series:Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 49.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b8006057
006 m o d
007 cr |||||||||||
008 130128s1985 nyu o 000 0 eng
005 20240418145658.7
019 |a 934975145 
020 |a 9781475743173  |q (electronic bk.) 
020 |a 1475743173  |q (electronic bk.) 
020 |z 9781441928245 
020 |z 1441928243 
020 |z 1475743173 
024 7 |a 10.1007/978-1-4757-4317-3 
035 |a (OCoLC)spr851741832 
035 |a (OCoLC)851741832  |z (OCoLC)934975145 
037 |a spr10.1007/978-1-4757-4317-3 
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCF  |d UA@  |d UPM  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d YDX 
049 |a GWRE 
050 4 |a QC19.2-20.85 
100 1 |a Ladyzhenskai︠a︡, O. A.  |q (Olʹga Aleksandrovna) 
245 1 4 |a The Boundary Value Problems of Mathematical Physics /  |c by O.A. Ladyzhenskaya. 
260 |a New York, NY :  |b Springer New York,  |c 1985. 
300 |a 1 online resource (xxx, 322 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 49. 
505 0 |a I Preliminary Considerations -- II Equations of Elliptic Type -- III Equations of Parabolic Type -- IV Equations of Hyperbolic Type -- V Some Generalizations -- VI The Method of Finite Differences. 
520 |a In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions. 
650 0 |a Physics. 
650 7 |a Physics.  |2 fast  |0 (OCoLC)fst01063025. 
776 0 8 |i Print version:  |z 9781441928245. 
830 0 |a Applied mathematical sciences (Springer-Verlag New York Inc.) ;  |v v. 49. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-4757-4317-3  |z Full Text (via Springer) 
907 |a .b80060572  |b 07-02-19  |c 06-02-15 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g nyu  |h 4  |i 1 
907 |a .b80060572  |b 05-09-17  |c 06-02-15 
915 |a M 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Mathematics 
956 |a Springer e-books: Archive 
999 f f |i 13b474ef-b814-5f50-b030-01e2e58fdcd6  |s bdef7c67-8efb-5c7f-b39b-b12d1f81a781 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QC19.2-20.85  |h Library of Congress classification  |i Ebooks, Prospector  |n 1