Boundary Element Techniques : Theory and Applications in Engineering / by C.A. Brebbia, J.C.F. Telles, L.C. Wrobel.
VI SOCRATES: I think that we ought to stress that we will write only about things that we have first hand experience in, in a coherent way that will be useful to engineers and other scientists and stressing the formulation without being too mathematical. We should write with integrity and honesty, g...
Saved in:
Online Access: |
Full Text (via Springer) |
---|---|
Main Authors: | , , |
Format: | eBook |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
1984.
|
Subjects: |
Table of Contents:
- 1 Approximate Methods
- 1.1. Introduction
- 1.2. Basic Definitions
- 1.3. Approximate Solutions
- 1.4. Method of Weighted Residuals
- 1.4.1. The Collocation Method
- 1.4.2. Method of Collocation by Subregions
- 1.5. Method of Galerkin
- 1.6. Weak Formulations
- 1.7. Inverse Problem and Boundary Solutions
- 1.8. Classification of Approximate Methods
- References
- 2 Potential Problems
- 2.1. Introduction
- 2.2. Elements of Potential Theory
- 2.3. Indirect Formulation
- 2.4. Direct Formulation
- 2.5. Boundary Element Method
- 2.6. Two-Dimensional Problems
- 2.6.1. Source Formulation
- 2.7. Poisson Equation
- 2.8. Subregions
- 2.9. Orthotropy and Anisotropy
- 2.10. Infinite Regions
- 2.11. Special Fundamental Solutions
- 2.12. Three-Dimensional Problems
- 2.13. Axisymmetric Problems
- 2.14. Axisymmetric Problems with Arbitrary Boundary Conditions
- 2.15. Nonlinear Materials and Boundary Conditions
- 2.15.1. Nonlinear Boundary Conditions
- References
- 3 Interpolation Functions
- 3.1. Introduction
- 3.2. Linear Elements for Two-Dimensional Problems
- 3.3. Quadratic and Higher-Order Elements
- 3.4. Boundary Elements for Three-Dimensional Problems
- 3.4.1. Quadrilateral Elements
- 3.4.2. Higher-Order Quadrilateral Elements
- 3.4.3. Lagrangian Quadrilateral Elements
- 3.4.4. Triangular Elements
- 3.4.5. Higher-Order Triangular Elements
- 3.5. Three-Dimensional Cell Elements
- 3.5.1. Tetrahedron
- 3.5.2. Cube
- 3.6. Discontinuous Boundary Elements
- 3.7. Order of Interpolation Functions
- References
- 4 Diffusion Problems
- 4.1. Introduction
- 4.2. Laplace Transforms
- 4.3. Coupled Boundary Element
- Finite Difference Methods
- 4.4. Time-Dependent Fundamental Solutions
- 4.5. Two-Dimensional Problems
- 4.5.1. Constant Time Interpolation
- 4.5.2. Linear Time Interpolation
- 4.5.3. Quadratic Time Interpolation
- 4.5.4. Space Integration
- 4.6. Time-Marching Schemes
- 4.7. Three-Dimensional Problems
- 4.8. Axisymmetric Problems
- 4.9. Nonlinear Diffusion
- References
- 5 Elastostatics
- 5.1. Introduction to the Theory of Elasticity
- 5.1.1. Initial Stresses or Initial Strains
- 5.2. Fundamental Integral Statement
- 5.2.1. Somigliana Identity
- 5.3. Fundamental Solutions
- 5.4. Stresses at Internal Points
- 5.5. Boundary Integral Equation
- 5.6. Infinite and Semi-Infinite Regions
- 5.7. Numerical Implementation
- 5.8. Boundary Elements
- 5.9. System of Equations
- 5.10. Stresses and Displacements Inside the Body
- 5.11. Stresses on the Boundary
- 5.12. Surface Traction Discontinuities
- 5.13. Two-Dimensional Elasticity
- 5.14. Body Forces
- 5.14.1. Gravitational Loads
- 5.14.2. Centrifugal Load
- 5.14.3. Thermal Loading
- 5.15. Axisymmetric Problems
- 5.15.1. Extension to Nonaxisymmetric Boundary Values
- 5.16. Anisotropy
- References
- 6 Boundary Integral Formulation for Inelastic Problems
- 6.1. Introduction
- 6.2. Inelastic Behavior of Materials
- 6.3. Governing Equations
- 6.4. Boundary Integral Formulation
- 6.5. Internal Stresses
- 6.6. Alternative Boundary Element Formulations
- 6.6.1. Initial Strain
- 6.6.2. Initial Stress
- 6.6.3. Fictitious Tractions and Body Forces
- 6.7. Half-Plane Formulations
- 6.8. Spatial Discretization
- 6.9. Internal Cells
- 6.10. Axisymmetric Case
- References
- 7 Elastoplasticity
- 7.1. Introduction
- 7.2. Some Simple Elastoplastic Relations
- 7.3. Initial Strain: Numerical Solution Technique
- 7.3.1. Examples
- Initial Strain Formulation
- 7.4. General Elastoplastic Stress-Strain Relations
- 7.5. Initial Stress: Outline of Solution Techniques
- 7.5.1. Examples: Kelvin Implementation
- 7.5.2. Examples: Half-Plane Implementation
- 7.6. Comparison with Finite Elements
- References
- 8 Other Nonlinear Material Problems
- 8.1. Introduction
- 8.2. Rate-Dependent Constitutive Equations
- 8.3. Solution Technique: Viscoplasticity
- 8.4. Examples: Time-Dependent Problems
- 8.5. No-Tension Materials
- References
- 9 Plate Bending
- 9.1. Introduction
- 9.2. Governing Equations
- 9.3. Integral Equations
- 9.3.1. Other Fundamental Solutions
- 9.4. Applications
- References
- 10 Wave Propagation Problems
- 10.1. Introduction
- 10.2. Three-Dimensional Water Wave Propagation Problems
- 10.3. Vertical Axisymmetric Bodies
- 10.4. Horizontal Cylinders of Arbitrary Section
- 10.5. Vertical Cylinders of Arbitrary Section
- 10.6. Transient Scalar Wave Equation
- 10.7. Three-Dimensional Problems: The Retarded Potential
- 10.8. Two-Dimensional Problems
- References
- 11 Vibrations
- 11.1. Introduction
- 11.2. Governing Equations
- 11.3. Time-Dependent Integral Formulation
- 11.4. Laplace Transform Formulation
- 11.5. Steady-State Elastodynamics
- 11.6. Free Vibrations
- References
- 12 Further Applications in Fluid Mechanics
- 12.1. Introduction
- 12.2. Transient Groundwater Flow
- 12.3. Moving Interface Problems
- 12.4. Axisymmetric Bodies in Cross Flow
- 12.5. Slow Viscous Flow (Stokes Flow)
- 12.6. General Viscous Flow
- 12.6.1. Steady Problems
- 12.6.2. Transient Problems
- References
- 13 Coupling of Boundary Elements with Other Methods
- 13.1. Introduction
- 13.2. Coupling of Finite Element and Boundary Element Solutions
- 13.2.1. The Energy Approach
- 13.3. Alternative Approach
- 13.4. Internal Fluid Problems
- 13.4.1. Free-Surface Boundary Condition
- 13.4.2. Extension to Compressible Fluid
- 13.5. Approximate Boundary Elements
- 13.6. Approximate Finite Elements
- References
- 14 Computer Program for Two-Dimensional Elastostatics
- 14.1. Introduction
- 14.2. Main Program and Data Structure
- 14.3. Subroutine INPUT
- 14.4. Subroutine MATRX
- 14.5. Subroutine FUNC
- 14.6. Subroutine SLNPD
- 14.7. Subroutine OUTPT
- 14.8. Subroutine FENC
- 14.9. Examples
- 14.9.1. Square Plate
- 14.9.2. Cylindrical Cavity Problem
- References
- Appendix A Numerical Integration Formulas
- A.1. Introduction
- A.2. Standard Gaussian Quadrature
- A.2.1. One-Dimensional Quadrature
- A.2.2. Two- and Three-Dimensional Quadrature for Rectangles and Rectangular Hexahedra
- A.2.3. Triangular Domain
- A.3. Computation of Singular Integrals
- A.3.1. One-Dimensional Logarithmic Gaussian Quadrature Formulas
- A.3.3. Numerical Evaluation of Cauchy Principal Values
- References
- Appendix B Semi-Infinite Fundamental Solutions
- B.1. Half-Space
- B.2. Half-Plane
- References
- Appendix C Some Particular Expressions for Two-Dimensional Inelastic Problems.