Scatter Search : Methodology and Implementations in C / by Manuel Laguna, Rafael Martí

The evolutionary approach called scatter search originated from strategies for creating composite decision rules and surrogate constraints. Recent studies demonstrate the practical advantages of this approach for solving a diverse array of optimization problems from both classical and real world set...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Laguna, Manuel
Other Authors: Martí, Rafael
Format: eBook
Language:English
Published: Boston, MA : Springer US, 2003.
Series:Operations research/computer science interfaces series ; 24.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b8011260
006 m o d
007 cr |||||||||||
008 121227s2003 mau o 000 0 eng
005 20240418150202.0
019 |a 935295033 
020 |a 9781461503378  |q (electronic bk.) 
020 |a 146150337X  |q (electronic bk.) 
020 |z 9781461350279 
020 |z 1461350271 
020 |z 146150337X 
024 7 |a 10.1007/978-1-4615-0337-8 
035 |a (OCoLC)spr852790599 
035 |a (OCoLC)852790599  |z (OCoLC)935295033 
037 |a spr10.1007/978-1-4615-0337-8 
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d GW5XE  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ 
049 |a GWRE 
050 4 |a QA402.5-402.6 
100 1 |a Laguna, Manuel. 
245 1 0 |a Scatter Search :  |b Methodology and Implementations in C /  |c by Manuel Laguna, Rafael Martí 
260 |a Boston, MA :  |b Springer US,  |c 2003. 
300 |a 1 online resource (xvii, 291 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 24. 
505 0 |a 1. Introduction -- 1. Historical Background -- 2. Basic Design -- 3. C Code Conventions -- 2. Tutorial:Unconstrained Nonlinear Optimization -- 1. Diversification Generation Method -- 2. Improvement Method -- 3. Reference Set Update Method -- 4. Subset Generation Method -- 5. Combination Method -- 6. Overall Procedure -- 7. Summary of C Functions -- 3. Tutorial:0-1 Knapsack Problems -- 1. Diversification Generation Method -- 2. Improvement Method -- 3. Reference Set Update Method -- 4. Subset Generation Method -- 5. Combination Method -- 6. Overall Procedure -- 7. Summary of C Functions -- 4. Tutorial:Linear Ordering Problem -- 1. The Linear Ordering Problem -- 2. Diversification Generation Method -- 3. Improvement Method -- 4. Reference Set Update Method -- 5. Combination Method -- 6. Summary of C Functions -- 5. Advanced Scatter Search Designs -- 1. Reference Set -- 2. Subset Generation -- 3. Specialized Combination Methods -- 4. Diversification Generation -- 6. Use of Memory in Scatter Search -- 1. Tabu Search -- 2. Explicit Memory -- 3. Attributive Memory -- 7. Connections with Other Population-Based Approaches -- 1. Genetic Algorithms -- 2. Path Relinking -- 3. Intensification and Diversification -- 8. Scatter Search Applications -- 1. Neural Network Training -- 2. Multi-Objective Bus Routing -- 3. Arc Crossing Minimization in Graphs -- 4. Maximum Clique -- 5. Graph Coloring -- 6. Periodic Vehicle Loading -- 7. Capacitated Multicommodity Network Design -- 8. Job-Shop Scheduling -- 9. Capacitated Chinese Postman Problem -- 10. Vehicle Routing -- 11. Binary Mixed Integer Programming -- 12. Iterated Re-start Procedures -- 13. Parallelization for the P-Median -- 14. OptQuest Application -- 9. Commercial Scatter Search Implementation -- 1. General OCL Design -- 2. Constraints and Requirements -- 3. OCL Functionality -- 4. Computational Experiments -- 5. Conclusions -- 6. Appendix -- 10. Experiences and Future Directions -- 1. Experiences and Findings -- 2. Multi-Objective Scatter Search -- 3. Maximum Diversity Problem -- 4. Implications for Future Developments -- References. 
520 |a The evolutionary approach called scatter search originated from strategies for creating composite decision rules and surrogate constraints. Recent studies demonstrate the practical advantages of this approach for solving a diverse array of optimization problems from both classical and real world settings. Scatter search contrasts with other evolutionary procedures, such as genetic algorithms, by providing unifying principles for joining solutions based on generalized path constructions in Euclidean space and by utilizing strategic designs where other approaches resort to randomization. The book's goal is to provide the basic principles and fundamental ideas that will allow the readers to create successful applications of scatter search. The book includes the C source code of the methods introduced in each chapter. From the Foreword: ̀Scatter Search represents a "missing link" in the literature of evolutionary methods ... From a historical perspective, the dedicated use of heuristic strategies both to guide the process of combining solutions and to enhance the quality of offspring has been heralded as a key innovation in evolutionary methods, giving rise to what are sometimes called "hybrid" or ("memetic") evolutionary procedures. The underlying processes have been introduced into the mainstream of evolutionary methods (such as genetic algorithms, for example) by a series of gradual steps beginning in the late 1980s. Yet this theme is an integral part of the scatter search methodology proposed a decade earlier, and the form and scope of such heuristic strategies embedded in scatter search continue to set it apart. Although there are points in common between scatter search and other evolutionary approaches, principally as a result of changes that have brought other approaches closer to scatter search in recent years, there remain differences that have an important impact on practical outcomes. Reflecting this impact, a hallmark of the present book is its focus on practical problem solving. Laguna and Martí give the reader the tools to create scatter search implementations for problems from a wide range of settings. Although theoretical problems (such as abstract problems in graph theory) are included, beyond a doubt the practical realm has a predominant role in this book ... ' Fred Glover, University of Colorado. 
650 0 |a Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247. 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163. 
700 1 |a Martí, Rafael. 
776 0 8 |i Print version:  |z 9781461350279. 
830 0 |a Operations research/computer science interfaces series ;  |v 24. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-4615-0337-8  |z Full Text (via Springer) 
907 |a .b80112602  |b 07-02-19  |c 06-02-15 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g mau  |h 0  |i 1 
907 |a .b80112602  |b 05-09-17  |c 06-02-15 
915 |a M 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Business and Economics 
956 |a Business & Economics 
956 |a Springer e-books: Archive 
999 f f |i 6f368ed4-ba5c-5dc7-beed-b06d905bc1bf  |s 1d367c7e-3950-5ba0-8cae-0821f9764d44 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA402.5-402.6  |h Library of Congress classification  |i Ebooks, Prospector  |n 1