Mathematical Topics Between Classical and Quantum Mechanics / by N.P. Landsman.

This monograph draws on two traditions: the algebraic formulation of quantum mechanics and quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probabi...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Landsman, N. P.
Format: eBook
Language:English
Published: New York, NY : Springer New York, 1998.
Series:Springer monographs in mathematics.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b8012500
006 m o d
007 cr |||||||||||
008 121227s1998 nyu o 000 0 eng
005 20240418150106.8
020 |a 9781461216803  |q (electronic bk.) 
020 |a 146121680X  |q (electronic bk.) 
020 |z 9781461272427 
020 |z 1461272424 
020 |z 146121680X 
024 7 |a 10.1007/978-1-4612-1680-3 
035 |a (OCoLC)spr853261889 
035 |a (OCoLC)853261889 
037 |a spr10.1007/978-1-4612-1680-3 
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCF  |d COO  |d OCLCQ 
049 |a GWRE 
050 4 |a QC19.2-20.85 
100 1 |a Landsman, N. P. 
245 1 0 |a Mathematical Topics Between Classical and Quantum Mechanics /  |c by N.P. Landsman. 
260 |a New York, NY :  |b Springer New York,  |c 1998. 
300 |a 1 online resource (xix, 529 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382. 
505 0 |a Introductory overview -- Observables and pure states -- Quantization and the classical limit -- Groups, bundles, and groupoids -- Reduction and induction -- Notes -- References -- Index. 
520 |a This monograph draws on two traditions: the algebraic formulation of quantum mechanics and quantum field theory, and the geometric theory of classical mechanics. These are combined in a unified treatment of the theory of Poisson algebras of observables and pure state spaces with a transition probability. The theory of quantization and the classical limit is discussed from this perspective. A prototype of quantization comes from the analogy between the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel between reduction of symplectic manifolds in classical mechanics and induced representations of groups and C*- algebras in quantum mechanics plays an equally important role. Examples from physics include constrained quantization, curved spaces, magnetic monopoles, gauge theories, massless particles, and $theta$- vacua. The book should be accessible to mathematicians with some prior knowledge of classical and quantum mechanics, to mathematical physicists and to theoretical physicists who have some background in functional analysis. 
650 0 |a Physics. 
650 7 |a Physics.  |2 fast  |0 (OCoLC)fst01063025. 
776 0 8 |i Print version:  |z 9781461272427. 
830 0 |a Springer monographs in mathematics. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-4612-1680-3  |z Full Text (via Springer) 
907 |a .b80125001  |b 07-02-19  |c 06-02-15 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b80125001  |b 05-09-17  |c 06-02-15 
915 |a M 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Mathematics 
956 |a Springer e-books: Archive 
999 f f |i 5a4b21ed-9d30-50b3-be97-15a847c2695b  |s c90dec40-ee73-51b1-9208-f562bd699db8 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QC19.2-20.85  |h Library of Congress classification  |i Ebooks, Prospector  |n 1