Linear algebra / Serge Lang.

Linear Algebra is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorems for linear maps, including eigenvectors and eigenvalues, quadric and hermitian forms, diagonali...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Lang, Serge, 1927-2005
Format: eBook
Language:English
Published: New York : Springer, [2010]
Edition:Third edition.
Series:Undergraduate texts in mathematics.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b8016399
006 m o d
007 cr |||||||||||
008 131029s2010 nyua o 001 0 eng d
005 20240418150449.4
020 |a 9781475719499  |q (electronic bk.) 
020 |a 1475719493  |q (electronic bk.) 
020 |z 9781441930811 
020 |z 1441930817 
024 7 |a 10.1007/978-1-4757-1949-9 
035 |a (OCoLC)spr861705412 
035 |a (OCoLC)861705412 
037 |a spr978-1-4757-1949-9 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d OCLCF  |d OCLCQ  |d YDX  |d UAB  |d OCLCA  |d OCLCQ  |d U3W  |d OCLCQ  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA251  |b .L26 2010eb 
100 1 |a Lang, Serge,  |d 1927-2005.  |0 http://id.loc.gov/authorities/names/n79053939  |1 http://isni.org/isni/0000000120322910. 
245 1 0 |a Linear algebra /  |c Serge Lang. 
250 |a Third edition. 
264 1 |a New York :  |b Springer,  |c [2010] 
264 4 |c ©2010. 
300 |a 1 online resource (ix, 296 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Undergraduate texts in mathematics. 
500 |a Includes index. 
505 0 |a Vector Spaces -- Matrices -- Linear Mappings -- Linear Maps and Matrices -- Scalar Products and Orthogonality -- Determinants -- Symmetric, Hermitian, and Unitary Operators -- Eigenvectors and Eigenvalues -- Polynomials and Matrices -- Triangulation of Matrices and Linear Maps -- Polynomials and Primary Decomposition -- Convex Sets -- Appendix I. Complex Numbers -- Appendix II. Iwasawa Decomposition and Others -- Index. 
520 |a Linear Algebra is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorems for linear maps, including eigenvectors and eigenvalues, quadric and hermitian forms, diagonalization of symmetric, hermitian, and unitary linear maps and matrices, triangulation, and Jordan canonical form. The book also includes a useful chapter on convex sets and the finite-dimensional Krein-Milman theorem. The presentation is aimed at the student who has already had some exposure to the elementary theory of matrices, determinants, and linear maps. However, the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added. 
588 0 |a Print version record. 
650 0 |a Algebras, Linear.  |0 http://id.loc.gov/authorities/subjects/sh85003441. 
650 7 |a Algebras, Linear.  |2 fast  |0 (OCoLC)fst00804946. 
776 0 8 |i Print version:  |a Lang, Serge, 1927-2005.  |t Linear algebra.  |b Third edition  |z 9781441930811  |w (OCoLC)693008249. 
830 0 |a Undergraduate texts in mathematics.  |0 http://id.loc.gov/authorities/names/n42025566. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-1-4757-1949-9  |z Full Text (via Springer) 
907 |a .b80163993  |b 02-01-22  |c 06-02-15 
998 |a web  |b 01-31-22  |c b  |d b   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b80163993  |b 01-31-22  |c 06-02-15 
944 |a MARS - RDA ENRICHED 
956 |a Mathematics 
915 |a - 
956 |a Springer e-books: Archive 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
999 f f |i d5647dac-22dc-568e-bbfd-f8fcce93e61c  |s c93ea010-890a-5917-98b5-dcf106ff5bb9 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA251 .L26 2010eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1