Fuzzy control of industrial systems : theory and applications / by Ian S. Shaw.

Fuzzy Control of Industrial Systems: Theory and Applications presents the basic theoretical framework of crisp and fuzzy set theory, relating these concepts to control engineering based on the analogy between the Laplace transfer function of linear systems and the fuzzy relation of a nonlinear fuzzy...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Shaw, Ian S.
Format: eBook
Language:English
Published: Boston : Kluwer Academic Publishers, 1998.
Series:Kluwer international series in engineering and computer science ; 457.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b8018821
006 m o d
007 cr |||||||||||
008 140711s1998 maua ob 001 0 eng d
005 20240418150636.9
020 |a 9781475728132  |q (electronic bk.) 
020 |a 1475728131  |q (electronic bk.) 
020 |z 0792382498 
020 |z 9780792382492 
024 7 |a 10.1007/978-1-4757-2813-2 
035 |a (OCoLC)spr883391470 
035 |a (OCoLC)883391470 
037 |a spr978-1-4757-2813-2 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d OCLCQ  |d UAB  |d COO  |d OCLCA  |d OCLCQ  |d YDX  |d UKAHL  |d OCLCQ 
049 |a GWRE 
050 4 |a TJ217.5  |b .S45 1998eb 
100 1 |a Shaw, Ian S.  |0 http://id.loc.gov/authorities/names/n98056668  |1 http://isni.org/isni/0000000116589436. 
245 1 0 |a Fuzzy control of industrial systems :  |b theory and applications /  |c by Ian S. Shaw. 
264 1 |a Boston :  |b Kluwer Academic Publishers,  |c 1998. 
300 |a 1 online resource (xxiii, 192 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Kluwer international series in engineering and computer science ;  |v 457. 
504 |a Includes bibliographical references and index. 
505 0 0 |g 1.  |t What is an Intelligent System? --  |g 2.  |t Modeling Plants and Processes of Control Systems --  |g 3.  |t Introduction to Set Theory and Fuzzy Logic --  |g 4.  |t Set Operations --  |g 5.  |t Generic Structure of Fuzzy Controllers --  |g 6.  |t Fuzzy Controllers --  |g 7.  |t System Identification for Rule-Based Systems --  |g 8.  |t Stability Analysis of Fuzzy Control System --  |g 9.  |t Neurofuzzy Controllers --  |g 10.  |t Practical Fuzzy Controller Development --  |g 11.  |t Examples of Fuzzy Control --  |g 12.  |t Fuzzy Model of Human Control Operator --  |g 13.  |t Collaborative Intelligent Control Systems --  |g 14.  |t Conclusions. 
520 |a Fuzzy Control of Industrial Systems: Theory and Applications presents the basic theoretical framework of crisp and fuzzy set theory, relating these concepts to control engineering based on the analogy between the Laplace transfer function of linear systems and the fuzzy relation of a nonlinear fuzzy system. Included are generic aspects of fuzzy systems with an emphasis on the many degrees of freedom and its practical design implications, modeling and systems identification techniques based on fuzzy rules, parametrized rules and relational equations, and the principles of adaptive fuzzy and neurofuzzy systems. Practical design aspects of fuzzy controllers are covered by the detailed treatment of fuzzy and neurofuzzy software design tools with an emphasis on iterative fuzzy tuning, while novel stability limit testing methods and the definition and practical examples of the new concept of collaborative control systems are also given. In addition, case studies of successful applications in industrial automation, process control, electric power technology, electric traction, traffic engineering, wastewater treatment, manufacturing, mineral processing and automotive engineering are also presented, in order to assist industrial control systems engineers in recognizing situations when fuzzy and neurofuzzy would offer certain advantages over traditional methods, particularly in controlling highly nonlinear and time-variant plants and processes. 
588 0 |a Print version record. 
650 0 |a Intelligent control systems.  |0 http://id.loc.gov/authorities/subjects/sh88003681. 
650 0 |a Fuzzy systems.  |0 http://id.loc.gov/authorities/subjects/sh85052628. 
650 7 |a Fuzzy systems.  |2 fast  |0 (OCoLC)fst00936814. 
650 7 |a Intelligent control systems.  |2 fast  |0 (OCoLC)fst00975911. 
776 0 8 |i Print version:  |a Shaw, Ian S.  |t Fuzzy control of industrial systems  |z 0792382498  |w (DLC) 98029955  |w (OCoLC)39361120. 
830 0 |a Kluwer international series in engineering and computer science ;  |v 457.  |0 http://id.loc.gov/authorities/names/n84749953. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-1-4757-2813-2  |z Full Text (via Springer) 
907 |a .b80188217  |b 12-01-21  |c 06-02-15 
998 |a web  |b 11-30-21  |c b  |d b   |e -  |f eng  |g mau  |h 0  |i 1 
907 |a .b80188217  |b 11-30-21  |c 06-02-15 
944 |a MARS - RDA ENRICHED 
915 |a - 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Engineering 
956 |a Engineering 
956 |a Springer e-books: Archive 
999 f f |i 6faed1d0-e9ab-50eb-ad5f-91411866af06  |s 231e6cb0-514a-5e74-a63d-bec3054ecb03 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e TJ217.5 .S45 1998eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1