Rational points on elliptic curves / Joseph H. Silverman, John Tate.

The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time,...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Authors: Silverman, Joseph H., 1955- (Author), Tate, John Torrence, 1925-2019 (Author)
Format: eBook
Language:English
Published: Cham : Springer, 2015.
Edition:Second edition.
Series:Undergraduate texts in mathematics.
Subjects:
Description
Summary:The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and group structure of elliptic curves, the Nagell-Lutz theorem describing points of finite order, the Mordell-Weil theorem on the finite generation of the group of rational points, the Thue-Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves.
Physical Description:1 online resource (xxii, 332 pages) : illustrations.
Bibliography:Includes bibliographical references and index.
ISBN:9783319185880
3319185888
331918587X
9783319185873
Source of Description, Etc. Note:Online resource; title from PDF title page (SpringerLink, viewed June 9, 2015)