Rational points on elliptic curves / Joseph H. Silverman, John Tate.

The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time,...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Authors: Silverman, Joseph H., 1955- (Author), Tate, John Torrence, 1925-2019 (Author)
Format: eBook
Language:English
Published: Cham : Springer, 2015.
Edition:Second edition.
Series:Undergraduate texts in mathematics.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b8068948
006 m o d
007 cr |||||||||||
008 150609s2015 sz a ob 001 0 eng d
005 20240423171349.3
019 |a 972003811 
020 |a 9783319185880  |q (electronic bk.) 
020 |a 3319185888  |q (electronic bk.) 
020 |a 331918587X  |q (print) 
020 |a 9783319185873  |q (print) 
020 |z 9783319185873 
024 7 |a 10.1007/978-3-319-18588-0 
035 |a (OCoLC)spr910883818 
035 |a (OCoLC)910883818  |z (OCoLC)972003811 
035 |a (OCoLC)910883818 
037 |a spr10.1007/978-3-319-18588-0 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDXCP  |d UPM  |d AZU  |d COO  |d OCLCQ  |d LVT 
049 |a GWRE 
050 4 |a QA567.2.E44 
100 1 |a Silverman, Joseph H.,  |d 1955-  |e author.  |0 http://id.loc.gov/authorities/names/n85041697  |1 http://isni.org/isni/0000000108849867. 
245 1 0 |a Rational points on elliptic curves /  |c Joseph H. Silverman, John Tate. 
250 |a Second edition. 
264 1 |a Cham :  |b Springer,  |c 2015. 
300 |a 1 online resource (xxii, 332 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Undergraduate texts in mathematics. 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- Geometry and Arithmetic -- Points of Finite Order -- The Group of Rational Points -- Cubic Curves over Finite Fields -- Integer Points on Cubic Curves -- Complex Multiplication. 
520 |a The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and group structure of elliptic curves, the Nagell-Lutz theorem describing points of finite order, the Mordell-Weil theorem on the finite generation of the group of rational points, the Thue-Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed June 9, 2015) 
650 0 |a Curves, Elliptic.  |0 http://id.loc.gov/authorities/subjects/sh85034918. 
650 0 |a Rational points (Geometry)  |0 http://id.loc.gov/authorities/subjects/sh2001008362. 
650 0 |a Diophantine analysis.  |0 http://id.loc.gov/authorities/subjects/sh85038122. 
650 7 |a Curves, Elliptic.  |2 fast  |0 (OCoLC)fst00885455. 
650 7 |a Diophantine analysis.  |2 fast  |0 (OCoLC)fst00894086. 
650 7 |a Rational points (Geometry)  |2 fast  |0 (OCoLC)fst01090266. 
700 1 |a Tate, John Torrence,  |d 1925-2019,  |e author.  |0 http://id.loc.gov/authorities/names/n82011928  |1 http://isni.org/isni/0000000108628749. 
776 0 8 |i Printed edition:  |z 9783319185873. 
830 0 |a Undergraduate texts in mathematics.  |0 http://id.loc.gov/authorities/names/n42025566. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-18588-0  |z Full Text (via Springer) 
907 |a .b80689486  |b 03-19-20  |c 08-04-15 
998 |a web  |b 05-01-17  |c g  |d b   |e -  |f eng  |g sz   |h 0  |i 1 
907 |a .b80689486  |b 07-02-19  |c 08-04-15 
944 |a MARS - RDA ENRICHED 
907 |a .b80689486  |b 07-06-17  |c 08-04-15 
907 |a .b80689486  |b 05-23-17  |c 08-04-15 
915 |a I 
956 |a Springer e-books 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2015 English International 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2015 English International 
999 f f |i 0735b376-824c-5098-ab14-888c4a846bdd  |s af969cb7-96a0-57af-bd4c-1fc16b0896a2 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA567.2.E44  |h Library of Congress classification  |i Ebooks, Prospector  |n 1