A New Model to Simulate Energy Performance of VRF Systems [electronic resource]

Vrf, Energy Modeling, Building Simulation, Energy Efficiency, Energy Standard.

Saved in:
Bibliographic Details
Online Access: Online Access
Main Authors: Hong, Tianzhen (Author), Wang, Liping (Author), Kasahara, Shinichi (Author), Pang, Xiufeng (Author), Schetrit, Oren (Author), Yura, Yoshinori (Author), Hinokuma, Ryohei (Author)
Corporate Author: Lawrence Berkeley National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Science ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2014.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b8069711
003 CoU
005 20141125222053.6
006 m o d f
007 cr |||||||||||
008 150804e20140330||| o| f1|||||eng|d
035 |a (TOE)ost1164285 
035 |a (TOE)1164285 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 32  |2 edbsc 
086 0 |a E 1.99:lbnl-6666e 
086 0 |a E 1.99:lbnl-6666e 
088 |a lbnl-6666e 
245 0 2 |a A New Model to Simulate Energy Performance of VRF Systems  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of Science ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2014. 
300 |a 8 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 03/30/2014. 
500 |a "lbnl-6666e" 
500 |a ASHRAE Summer Conference, Seattle, June 28 - July 2, 2014. 
500 |a Hong, Tianzhen; Wang, Liping; Kasahara, Shinichi; Pang, Xiufeng; Schetrit, Oren; Yura, Yoshinori; Hinokuma, Ryohei. 
520 3 |a This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real houses under real operating conditions will vary. 
520 0 |a Vrf, Energy Modeling, Building Simulation, Energy Efficiency, Energy Standard. 
536 |b DE-AC02-05CH11231. 
650 7 |a Energy Conservation, Consumption, And Utilization.  |2 edbsc. 
700 1 |a Hong, Tianzhen  |4 aut. 
700 1 |a Wang, Liping  |4 aut. 
700 1 |a Kasahara, Shinichi  |4 aut. 
700 1 |a Pang, Xiufeng  |4 aut. 
700 1 |a Schetrit, Oren  |4 aut. 
700 1 |a Yura, Yoshinori  |4 aut. 
700 1 |a Hinokuma, Ryohei  |4 aut. 
710 2 |a Lawrence Berkeley National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Science.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/1164285/  |z Online Access 
907 |a .b80697112  |b 03-08-23  |c 08-04-15 
998 |a web  |b 08-04-15  |c f  |d m   |e p  |f eng  |g    |h 2  |i 1 
956 |a Information bridge 
999 f f |i fa4cb686-128f-5dea-935e-964b52f53eff  |s 96172c2c-3e24-5bb2-a473-35af63b761cc 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:lbnl-6666e  |h Superintendent of Documents classification  |i web  |n 1