|
|
|
|
LEADER |
00000cam a2200000xa 4500 |
001 |
b8563678 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
081017s2006 gw a ob 001 0 eng d |
005 |
20240418142727.7 |
019 |
|
|
|a 66262274
|a 228382386
|a 320958944
|a 607528483
|a 613440243
|a 647590907
|a 729898519
|a 756423998
|a 880102469
|
020 |
|
|
|a 9783540288206
|
020 |
|
|
|a 3540288201
|
020 |
|
|
|a 3540288198
|q (Cloth)
|
020 |
|
|
|a 9783540288190
|q (Cloth)
|
035 |
|
|
|a (OCoLC)spr262692521
|
035 |
|
|
|a (OCoLC)262692521
|z (OCoLC)66262274
|z (OCoLC)228382386
|z (OCoLC)320958944
|z (OCoLC)607528483
|z (OCoLC)613440243
|z (OCoLC)647590907
|z (OCoLC)729898519
|z (OCoLC)756423998
|z (OCoLC)880102469
|
037 |
|
|
|a spr10.1007/3-540-28820-1
|
040 |
|
|
|a GW5XE
|b eng
|e pn
|c GW5XE
|d OCLCQ
|d N$T
|d YDXCP
|d UAB
|d DKU
|d CNTRU
|d UBF
|d E7B
|d OCLCQ
|d IDEBK
|d OCLCQ
|d TUU
|d OCLCQ
|d MNU
|d YNG
|d OCLCO
|d EBLCP
|d OCLCQ
|d A7U
|d OCLCQ
|d OCLCF
|d BEDGE
|d VT2
|d OCLCQ
|d SLY
|d OCLCO
|d DEBSZ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|
049 |
|
|
|a GWRE
|
050 |
|
4 |
|a TK5102.9
|b .S564 2006eb
|
100 |
1 |
|
|a Šmídl, Václav.
|0 http://id.loc.gov/authorities/names/no2006015888
|1 http://isni.org/isni/0000000043465108.
|
245 |
1 |
4 |
|a The variational Bayes method in signal processing
|h [electronic resource] /
|c Václav Šmídl, Anthony Quinn.
|
260 |
|
|
|a Berlin ;
|a New York :
|b Springer,
|c ©2006.
|
300 |
|
|
|a 1 online resource (xx, 227 pages) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent.
|
337 |
|
|
|a computer
|b c
|2 rdamedia.
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier.
|
490 |
1 |
|
|a Signals and communication technology.
|
504 |
|
|
|a Includes bibliographical references (pages 217-224) and index.
|
505 |
0 |
|
|a Introduction -- Bayesian Theory -- Off-line Distributional Approximations and the Variational Bayes Method -- Principal Component Analysis and Matrix Decompositions -- Functional Analysis of Medical Image Sequences -- On-line Inference of Time-Invariant Parameters -- On-line Inference of Time-Variant Parameters -- The Mixture-based Extension of the AR Model (MEAR) -- Concluding Remarks.
|
520 |
1 |
|
|a "This is the first book-length treatment of the Variational Bayes (VB) approximation in signal processing. It has been written as a self-contained, self-learning guide for academic and industrial research groups in signal processing, data analysis, machine learning, identification and control. It reviews the VB distributional approximation, showing that tractable algorithms for parametric model identification can be generated in off-line and on-line contexts. Many of the principles are first illustrated via easy-to-follow scalar decomposition problems. In later chapters, successful applications are found in factor analysis for medical image sequences, mixture model identification and speech reconstruction. Results with simulated and real data are presented in detail. The unique development of an eight-step "VB method", which can be followed in all cases, enables the reader to develop a VB inference algorithm from the ground up, for their own particular signal or image model."--Jacket.
|
588 |
0 |
|
|a Print version record.
|
650 |
|
0 |
|a Signal processing
|x Statistical methods.
|0 http://id.loc.gov/authorities/subjects/sh2010113089.
|
650 |
|
0 |
|a Bayesian statistical decision theory.
|0 http://id.loc.gov/authorities/subjects/sh85012506.
|
650 |
|
7 |
|a Bayesian statistical decision theory.
|2 fast
|0 (OCoLC)fst00829019.
|
650 |
|
7 |
|a Signal processing
|x Statistical methods.
|2 fast
|0 (OCoLC)fst01118304.
|
700 |
1 |
|
|a Quinn, Anthony
|q (Anthony Paul)
|0 http://id.loc.gov/authorities/names/no2006015889
|1 http://isni.org/isni/0000000374372686.
|
776 |
0 |
8 |
|i Print version:
|a Šmídl, Václav.
|t Variational Bayes method in signal processing.
|d Berlin ; New York : Springer, ©2006
|z 3540288198
|z 9783540288190
|w (DLC) 2005934475
|w (OCoLC)62554156.
|
830 |
|
0 |
|a Signals and communication technology.
|0 http://id.loc.gov/authorities/names/no2002055234.
|
856 |
4 |
0 |
|u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/3-540-28820-1
|z Full Text (via Springer)
|
907 |
|
|
|a .b85636782
|b 03-19-20
|c 03-28-16
|
998 |
|
|
|a web
|b 05-01-17
|c g
|d b
|e -
|f eng
|g gw
|h 4
|i 1
|
907 |
|
|
|a .b85636782
|b 07-02-19
|c 03-28-16
|
944 |
|
|
|a MARS - RDA ENRICHED
|
907 |
|
|
|a .b85636782
|b 07-06-17
|c 03-28-16
|
907 |
|
|
|a .b85636782
|b 05-23-17
|c 03-28-16
|
915 |
|
|
|a I
|
956 |
|
|
|a Springer e-books
|
956 |
|
|
|b Springer Nature - Springer Engineering eBooks 2006 English International
|
956 |
|
|
|a Springer Engineering eBooks 2006 English+International
|
999 |
f |
f |
|i 665fa5c4-5859-5e79-8237-e54699c0a624
|s d31dbd71-3551-5ad0-867d-eee49c176412
|
952 |
f |
f |
|p Can circulate
|a University of Colorado Boulder
|b Online
|c Online
|d Online
|e TK5102.9 .S564 2006eb
|h Library of Congress classification
|i Ebooks, Prospector
|n 1
|