The monodromy group [electronic resource] / Henryk Żołądek.

In singularity theory and algebraic geometry the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. In the theory of systems of linear differential equations one has the R...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Żołądek, Henryk, 1953-
Format: Electronic eBook
Language:English
Published: Basel, Switzerland ; Boston : Birkhäuser, ©2006.
Series:Monografie matematyczne ; new ser., v. 67.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b8563884
006 m o d
007 cr |||||||||||
008 081017s2006 sz a ob 001 0 eng d
005 20240423170631.7
019 |a 74844800  |a 148689063  |a 401448056  |a 605690016  |a 729891778  |a 756424667  |a 880107695 
020 |a 9783764375362 
020 |a 3764375361 
020 |a 9783764375355  |q (paper) 
020 |a 3764375353  |q (paper) 
035 |a (OCoLC)spr262694378 
035 |a (OCoLC)262694378  |z (OCoLC)74844800  |z (OCoLC)148689063  |z (OCoLC)401448056  |z (OCoLC)605690016  |z (OCoLC)729891778  |z (OCoLC)756424667  |z (OCoLC)880107695 
037 |a spr10.1007/3-7643-7536-1 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d EBLCP  |d OCLCQ  |d MYPMP  |d U5D  |d N$T  |d YDXCP  |d AZU  |d YNG  |d OCLCO  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCF  |d OCLCQ  |d SLY  |d NUI  |d OCLCQ 
049 |a GWRE 
050 4 |a QA246  |b .Z65 2006eb 
100 1 |a Żołądek, Henryk,  |d 1953-  |0 http://id.loc.gov/authorities/names/n2006009666  |1 http://isni.org/isni/0000000117507092. 
245 1 4 |a The monodromy group  |h [electronic resource] /  |c Henryk Żołądek. 
260 |a Basel, Switzerland ;  |a Boston :  |b Birkhäuser,  |c ©2006. 
300 |a 1 online resource (xi, 580 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Monografie matematyczne ;  |v new ser., v. 67. 
504 |a Includes bibliographical references (pages 537-557) and index. 
505 0 |a Analytic functions and Morse theory -- Normal forms of functions -- Algebraic topology of manifolds -- Topology and monodromy of functions -- Integrals along vanishing cycles -- Vector fields and Abelian integrals -- Hodge structures and period map -- Linear differential systems -- Holomorphic foliations, local theory -- Holomorphic foliations, global aspects -- The Galois theory -- Hypergeometric functions. 
520 |a In singularity theory and algebraic geometry the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. In the theory of systems of linear differential equations one has the Riemann-Hilbert problem, the Stokes phenomena and the hypergeometric functions with their multidimensional generalizations. In the theory of homomorphic foliations there appear the Ecalle-Voronin-Martinet-Ramis moduli. On the other hand, there is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. All this is presented in this book, underlining the unifying role of the monodromy group. The material is addressed to a wide audience, ranging from specialists in the theory of ordinary differential equations to algebraic geometers. The book contains a lot of results which are usually spread in many sources. Readers can quickly get introduced to modern and vital mathematical theories, such as singularity theory, analytic theory of ordinary differential equations, holomorphic foliations, Galois theory, and parts of algebraic geometry, without searching in vast literature. 
588 0 |a Print version record. 
650 0 |a Monodromy groups.  |0 http://id.loc.gov/authorities/subjects/sh87005568. 
650 0 |a Riemann-Hilbert problems.  |0 http://id.loc.gov/authorities/subjects/sh85114041. 
650 7 |a Monodromy groups.  |2 fast  |0 (OCoLC)fst01025575. 
650 7 |a Riemann-Hilbert problems.  |2 fast  |0 (OCoLC)fst01097802. 
776 0 8 |i Print version:  |a Żołądek, Henryk, 1953-  |t Monodromy group.  |d Basel, Switzerland ; Boston : Birkhäuser, ©2006  |z 3764375353  |z 9783764375355  |w (DLC) 2006042650  |w (OCoLC)63705907. 
830 0 |a Monografie matematyczne ;  |v new ser., v. 67.  |0 http://id.loc.gov/authorities/names/n83743013. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/3-7643-7536-1  |z Full Text (via Springer) 
907 |a .b85638845  |b 03-19-20  |c 03-28-16 
998 |a web  |b 05-01-17  |c g  |d b   |e -  |f eng  |g sz   |h 4  |i 1 
907 |a .b85638845  |b 07-02-19  |c 03-28-16 
944 |a MARS - RDA ENRICHED 
907 |a .b85638845  |b 07-06-17  |c 03-28-16 
907 |a .b85638845  |b 05-23-17  |c 03-28-16 
915 |a I 
956 |a Springer e-books 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2006 English International 
956 |a Springer Mathematics and Statistics eBooks 2006 English+International 
999 f f |i 17993879-9e67-5753-b6ec-c755281a3e31  |s 7178d90a-5dc4-5612-a841-2c708df6f7fc 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA246 .Z65 2006eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1