A machine-learning approach to phishing detection and defense [electronic resource] / Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi.

Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Det...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ScienceDirect)
Main Authors: Akanbi, Oluwatobi Ayodeji (Author), Amiri, Iraj Sadegh, 1977- (Author), Fazeldehkordi, Elahe (Author)
Format: Electronic eBook
Language:English
Published: Amsterdam : Elsevier, [2014]
©2015.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b8587100
003 CoU
005 20221118052825.0
006 m o d
007 cr |||||||||||
008 141219t20142015ne ob 000 0 eng d
020 |a 1322480850  |q (electronic bk.) 
020 |a 9781322480855  |q (electronic bk.) 
020 |a 9780128029466  |q (electronic bk.) 
020 |a 0128029463  |q (electronic bk.) 
020 |z 9780128029275 
035 |a (OCoLC)scd898326414 
035 |a (OCoLC)898326414 
037 |a scd9780128029275 
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d EBLCP  |d N$T  |d OPELS  |d OCLCF  |d DEBSZ  |d DEBBG  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d D6H  |d OCLCQ  |d CUY  |d ZCU  |d ICG  |d DKC  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a HV6773.15.P45 
100 1 |a Akanbi, Oluwatobi Ayodeji,  |e author.  |0 http://id.loc.gov/authorities/names/no2015138635. 
245 1 2 |a A machine-learning approach to phishing detection and defense  |h [electronic resource] /  |c Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, Elahe Fazeldehkordi. 
260 |a Amsterdam :  |b Elsevier,  |c [2014] 
264 4 |c ©2015. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references. 
520 |a Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats. 
650 0 |a Phishing.  |0 http://id.loc.gov/authorities/subjects/sh2005003206. 
650 0 |a Computer networks  |x Security measures.  |0 http://id.loc.gov/authorities/subjects/sh94001277. 
650 7 |a Computer networks  |x Security measures.  |2 fast  |0 (OCoLC)fst00872341. 
650 7 |a Phishing.  |2 fast  |0 (OCoLC)fst01737436. 
700 1 |a Amiri, Iraj Sadegh,  |d 1977-  |e author.  |0 http://id.loc.gov/authorities/names/no2014139790  |1 http://isni.org/isni/0000000440103661. 
700 1 |a Fazeldehkordi, Elahe,  |e author.  |0 http://id.loc.gov/authorities/names/no2015138607  |1 http://isni.org/isni/0000000455714019. 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |t Amiri, I.S.A Machine-Learning Approach to Phishing Detection and Defense. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.sciencedirect.com/science/book/9780128029275  |z Full Text (via ScienceDirect) 
907 |a .b8587100x  |b 12-05-22  |c 05-10-16 
998 |a web  |b 11-30-22  |c b  |d b   |e -  |f eng  |g ne   |h 2  |i 1 
907 |a .b8587100x  |b 12-05-22  |c 05-10-16 
944 |a MARS - RDA ENRICHED 
915 |a - 
956 |b ScienceDirect All Books 
956 |a ScienceDirect ebooks 
956 |a ScienceDirect All Books 
999 f f |i 8dba574a-462c-5e12-ae91-441bc2fd8a7d  |s 19498234-4329-5b4f-b33a-ed4b121e3f0c 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e HV6773.15.P45  |h Library of Congress classification  |i web  |n 1