Time series analysis / Wilfredo Palma, Ponticia Universidad Católica de Chile.
A modern and accessible guide to the analysis of introductory time series data Featuring an organized and self-contained guide, Time Series Analysis provides a broad introduction to the most fundamental methodologies and techniques of time series analysis. The book focuses on the treatment of univar...
Saved in:
Online Access: |
Full Text (via ProQuest) |
---|---|
Main Author: | |
Format: | eBook |
Language: | English |
Published: |
Hoboken, NJ :
John Wiley & Sons,
[2016]
|
Subjects: |
Table of Contents:
- Title Page
- Copyright
- Table of Contents
- PREFACE
- ACKNOWLEDGMENTS
- ACRONYMS
- ABOUT THE COMPANION WEBSITE
- CHAPTER 1: INTRODUCTION
- 1.1 TIME SERIES DATA
- 1.2 RANDOM VARIABLES AND STATISTICAL MODELING
- 1.3 DISCRETE-TIME MODELS
- 1.4 SERIAL DEPENDENCE
- 1.5 NONSTATIONARITY
- 1.6 WHITENESS TESTING
- 1.7 PARAMETRIC AND NONPARAMETRIC MODELING
- 1.8 FORECASTING
- 1.9 TIME SERIES MODELING
- 1.10 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 2: LINEAR PROCESSES
- 2.1 DEFINITION
- 2.2 STATIONARITY
- 2.3 INVERTIBILITY
- 2.4 CAUSALITY
- 2.5 REPRESENTATIONS OF LINEAR PROCESSES
- 2.6 WEAK AND STRONG DEPENDENCE
- 2.7 ARMA MODELS
- 2.8 AUTOCOVARIANCE FUNCTION
- 2.9 ACF AND PARTIAL ACF FUNCTIONS
- 2.10 ARFIMA PROCESSES
- 2.11 FRACTIONAL GAUSSIAN NOISE
- 2.12 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 3: STATE SPACE MODELS
- 3.1 INTRODUCTION
- 3.2 LINEAR DYNAMICAL SYSTEMS
- 3.3 STATE SPACE MODELING OF LINEAR PROCESSES
- 3.4 STATE ESTIMATION
- 3.5 EXOGENOUS VARIABLES
- 3.6 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 4: SPECTRAL ANALYSIS
- 4.1 TIME AND FREQUENCY DOMAINS
- 4.2 LINEAR FILTERS
- 4.3 SPECTRAL DENSITY
- 4.4 PERIODOGRAM
- 4.5 SMOOTHED PERIODOGRAM
- 4.6 EXAMPLES
- 4.7 WAVELETS
- 4.8 SPECTRAL REPRESENTATION
- 4.9 TIME-VARYING SPECTRUM
- 4.10 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 5: ESTIMATION METHODS
- 5.1 MODEL BUILDING
- 5.2 PARSIMONY
- 5.3 AKAIKE AND SCHWARTZ INFORMATION CRITERIA
- 5.4 ESTIMATION OF THE MEAN
- 5.5 ESTIMATION OF AUTOCOVARIANCES
- 5.6 MOMENT ESTIMATION
- 5.7 MAXIMUM-LIKELIHOOD ESTIMATION
- 5.8 WHITTLE ESTIMATION
- 5.9 STATE SPACE ESTIMATION
- 5.10 ESTIMATION OF LONG-MEMORY PROCESSES
- 5.11 NUMERICAL EXPERIMENTS
- 5.12 BAYESIAN ESTIMATION
- 5.13 STATISTICAL INFERENCE
- 5.14 ILLUSTRATIONS
- 5.15 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 6: NONLINEAR TIME SERIES.
- 6.1 INTRODUCTION
- 6.2 TESTING FOR LINEARITY
- 6.3 HETEROSKEDASTIC DATA
- 6.4 ARCH MODELS
- 6.5 GARCH MODELS
- 6.6 ARFIMA-GARCH MODELS
- 6.7 ARCH(∞) MODELS
- 6.8 APARCH MODELS
- 6.9 STOCHASTIC VOLATILITY
- 6.10 NUMERICAL EXPERIMENTS
- 6.11 DATA APPLICATIONS
- 6.12 VALUE AT RISK
- 6.13 AUTOCORRELATION OF SQUARES
- 6.14 THRESHOLD AUTOREGRESSIVE MODELS
- 6.15 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 7: PREDICTION
- 7.1 OPTIMAL PREDICTION
- 7.2 ONE-STEP AHEAD PREDICTORS
- 7.3 MULTISTEP AHEAD PREDICTORS
- 7.4 HETEROSKEDASTIC MODELS
- 7.5 PREDICTION BANDS
- 7.6 DATA APPLICATION
- 7.7 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 8: NONSTATIONARY PROCESSES
- 8.1 INTRODUCTION
- 8.2 UNIT ROOT TESTING
- 8.3 ARIMA PROCESSES
- 8.4 LOCALLY STATIONARY PROCESSES
- 8.5 STRUCTURAL BREAKS
- 8.6 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 9: SEASONALITY
- 9.1 SARIMA MODELS
- 9.2 SARFIMA MODELS
- 9.3 GARMA MODELS
- 9.4 CALCULATION OF THE ASYMPTOTIC VARIANCE
- 9.5 AUTOCOVARIANCE FUNCTION
- 9.6 MONTE CARLO STUDIES
- 9.7 ILLUSTRATION
- 9.8 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 10: TIME SERIES REGRESSION
- 10.1 MOTIVATION
- 10.2 DEFINITIONS
- 10.3 PROPERTIES OF THE LSE
- 10.4 PROPERTIES OF THE BLUE
- 10.5 ESTIMATION OF THE MEAN
- 10.6 POLYNOMIAL TREND
- 10.7 HARMONIC REGRESSION
- 10.8 ILLUSTRATION: AIR POLLUTION DATA
- 10.9 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 11: MISSING VALUES AND OUTLIERS
- 11.1 INTRODUCTION
- 11.2 LIKELIHOOD FUNCTION WITH MISSING VALUES
- 11.3 EFFECTS OF MISSING VALUES ON ML ESTIMATES
- 11.4 EFFECTS OF MISSING VALUES ON PREDICTION
- 11.5 INTERPOLATION OF MISSING DATA
- 11.6 SPECTRAL ESTIMATION WITH MISSING VALUES
- 11.7 OUTLIERS AND INTERVENTION ANALYSIS
- 11.8 BIBLIOGRAPHIC NOTES
- Problems
- CHAPTER 12: NON-GAUSSIAN TIME SERIES
- 12.1 DATA DRIVEN MODELS
- 12.2 PARAMETER DRIVEN MODELS.
- 12.3 ESTIMATION
- 12.4 DATA ILLUSTRATIONS
- 12.5 ZERO-INFLATED MODELS
- 12.6 BIBLIOGRAPHIC NOTES
- Problems
- APPENDIX A: COMPLEMENTS
- A.1 PROJECTION THEOREM
- A.2 WOLD DECOMPOSITION
- A.3 BIBLIOGRAPHIC NOTES
- APPENDIX B: SOLUTIONS TO SELECTED PROBLEMS
- APPENDIX C: DATA AND CODES
- REFERENCES
- TOPIC INDEX
- AUTHOR INDEX
- End User License Agreement.