Toward a Learning Science for Complex Crowdsourcing Tasks / Shayan Doroudi, Ece Kamar and Emma Brunskill.

We explore how crowdworkers can be trained to tackle complex crowdsourcing tasks. We are particularly interested in training novice workers to perform well on solving tasks in situations where the space of strategies is large and workers need to discover and try different strategies to be successful...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Authors: Doroudi, Shayan, Kamar, Ece (Author), Brunskill, Emma (Author), Horvitz, Eric (Author)
Format: eBook
Language:English
Published: [Place of publication not identified] : Distributed by ERIC Clearinghouse, 2016.
Subjects:

MARC

LEADER 00000cam a22000002u 4500
001 b8905739
003 CoU
005 20170209091047.0
006 m o d f
007 cr |||||||||||
008 160507s2016 xx |||| ot ||| | eng d
035 |a (ERIC)ed566648 
035 |a (MvI) 2K000000546583 
040 |a ericd  |b eng  |c MvI  |d MvI 
099 |a ED566648 
100 1 |a Doroudi, Shayan. 
245 1 0 |a Toward a Learning Science for Complex Crowdsourcing Tasks /  |c Shayan Doroudi, Ece Kamar and Emma Brunskill. 
264 1 |a [Place of publication not identified] :  |b Distributed by ERIC Clearinghouse,  |c 2016. 
300 |a 1 online resource (12 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Abstractor: As Provided.  |5 ericd. 
516 |a Text (Reports, Research) 
516 |a Text (Speeches/Meeting Papers) 
520 |a We explore how crowdworkers can be trained to tackle complex crowdsourcing tasks. We are particularly interested in training novice workers to perform well on solving tasks in situations where the space of strategies is large and workers need to discover and try different strategies to be successful. In a first experiment, we perform a comparison of five different training strategies. For complex web search challenges, we show that providing expert examples is an effective form of training, surpassing other forms of training in nearly all measures of interest. However, such training relies on access to domain expertise, which may be expensive or lacking. Therefore, in a second experiment we study the feasibility of training workers in the absence of domain expertise. We show that having workers validate the work of their peer workers can be even more effective than having them review expert examples if we only present solutions filtered by a threshold length. The results suggest that crowdsourced solutions of peer workers may be harnessed in an automated training pipeline. 
524 |a Online Submission, Paper presented at the CHI Conference on Human Factors in Computing Systems (San Jose, CA, May 7-12, 2016).  |2 ericd. 
650 0 7 |a Training Methods.  |2 ericd. 
650 0 7 |a Novices.  |2 ericd. 
650 0 7 |a Outsourcing.  |2 ericd. 
650 0 7 |a Comparative Analysis.  |2 ericd. 
650 0 7 |a Online Searching.  |2 ericd. 
650 0 7 |a Expertise.  |2 ericd. 
650 0 7 |a Feasibility Studies.  |2 ericd. 
650 0 7 |a Accuracy.  |2 ericd. 
650 0 7 |a Statistical Analysis.  |2 ericd. 
650 0 7 |a Instructional Effectiveness.  |2 ericd. 
650 0 7 |a Nonparametric Statistics.  |2 ericd. 
700 1 |a Kamar, Ece,  |e author. 
700 1 |a Brunskill, Emma,  |e author. 
700 1 |a Horvitz, Eric,  |e author. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED566648.pdf  |z Full Text (via ERIC) 
907 |a .b89057399  |b 07-06-22  |c 11-01-16 
998 |a web  |b 11-01-16  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i 5823c164-9645-5cc2-ac32-eb3e267dcf0c  |s b8914968-47e3-5755-85f9-fef795779dff 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED566648  |h Other scheme  |i web  |n 1