Prime numbers and the Riemann hypothesis / Barry Mazur, William Stein.

Saved in:
Bibliographic Details
Main Authors: Mazur, Barry (Author), Stein, William A., 1974- (Author)
Format: Book
Language:English
Published: New York, NY : Cambridge University Press, [2016]
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b8948648
003 CoU
005 20161114062709.3
008 150512s2016 nyua 001 0 eng
010 |a 2015018981 
019 |a 948772736 
020 |a 9781107101920 
020 |a 1107101921 
020 |a 9781107499430 
020 |a 1107499437 
024 8 |a 40025986961 
035 |a (OCoLC)ocn909025870 
035 |a (OCoLC)909025870 
040 |a DLC  |b eng  |e rda  |c YUS  |d DLC  |d YDXCP  |d BDX  |d BTCTA  |d OCLCF  |d TMK  |d GZU  |d PIT  |d GZM  |d ABG  |d GZN 
042 |a pcc 
049 |a CODA 
050 0 0 |a QA246  |b .M49 2016 
100 1 |a Mazur, Barry,  |e author.  |0 http://id.loc.gov/authorities/names/n84023573  |1 http://isni.org/isni/0000000108818163. 
245 1 0 |a Prime numbers and the Riemann hypothesis /  |c Barry Mazur, William Stein. 
264 1 |a New York, NY :  |b Cambridge University Press,  |c [2016] 
300 |a xi, 142 pages ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent. 
337 |a unmediated  |b n  |2 rdamedia. 
338 |a volume  |b nc  |2 rdacarrier. 
500 |a Includes index. 
504 |a Includes bibliographical references (pages 129-139) and index. 
505 0 |a The Riemann Hypothesis. Thoughts about numbers ; What are prime numbers? ; "Named" prime numbers ; Sieves ; Questions about primes ; Further questions about primes ; How many primes are there? ; Prime numbers viewed from a distance ; Pure and applied mathematics ; A probabilistic first guess ; What is a "good approximation" ; Square root error and random walks ; What is Riemann's Hypothesis ; The mystery moves to the error term ; Cesàro smoothing ; A view of Li(X) - [pi](X) ; The prime number theorem ; The staircase of primes ; Tinkering with the staircase of primes ; Computer music files and prime numbers ; The word "spectrum" ; Spectra and trigonometric sums ; The spectrum and the staircase of primes ; To our readers of Part I -- Distributions. Slopes of graphs that have no slopes ; Distributions ; Fourier Transforms : second visit ; Fourier Transform of delta ; Trigonometric series ; A sneak preview of Part III --- The Riemann Spectrum of prime numbers. On losing no information ; From primes to the Riemann Spectrum ; How many [theta][subscript i]'s are there? ; Further questions about the Riemann Spectrum ; From the Riemann Spectrum to primes -- Back to Riemann. Building [pi](X) from the Spectrum ; As Riemann envisioned it ; Companions to the zeta function. 
650 0 |a Riemann hypothesis.  |0 http://id.loc.gov/authorities/subjects/sh2005000907. 
650 0 |a Numbers, Prime.  |0 http://id.loc.gov/authorities/subjects/sh85093218. 
650 7 |a Numbers, Prime.  |2 fast  |0 (OCoLC)fst01041241. 
650 7 |a Riemann hypothesis.  |2 fast  |0 (OCoLC)fst01737612. 
700 1 |a Stein, William A.,  |d 1974-  |e author.  |0 http://id.loc.gov/authorities/names/n2006076910  |1 http://isni.org/isni/0000000114948319. 
907 |a .b89486481  |b 03-19-20  |c 11-18-16 
998 |a eng  |b 12-01-16  |c x  |d m   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b89486481  |b 07-23-17  |c 11-18-16 
944 |a MARS - RDA ENRICHED 
907 |a .b89486481  |b 01-09-17  |c 11-18-16 
907 |a .b89486481  |b 12-01-16  |c 11-18-16 
948 |a lr 
999 f f |i 7b28615a-e0ef-586e-9d63-65cf95cccdbd  |s a51bdcda-ed69-5687-bcb9-e0945778409a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Boulder Campus  |c Engineering Math & Physics  |d Closed Stacks - Engineering Math & Physics Library - Stacks  |e QA246 .M49 2016  |h Library of Congress classification  |i book  |m U183072366464  |n 1