|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
b8948648 |
003 |
CoU |
005 |
20161114062709.3 |
008 |
150512s2016 nyua 001 0 eng |
010 |
|
|
|a 2015018981
|
019 |
|
|
|a 948772736
|
020 |
|
|
|a 9781107101920
|
020 |
|
|
|a 1107101921
|
020 |
|
|
|a 9781107499430
|
020 |
|
|
|a 1107499437
|
024 |
8 |
|
|a 40025986961
|
035 |
|
|
|a (OCoLC)ocn909025870
|
035 |
|
|
|a (OCoLC)909025870
|
040 |
|
|
|a DLC
|b eng
|e rda
|c YUS
|d DLC
|d YDXCP
|d BDX
|d BTCTA
|d OCLCF
|d TMK
|d GZU
|d PIT
|d GZM
|d ABG
|d GZN
|
042 |
|
|
|a pcc
|
049 |
|
|
|a CODA
|
050 |
0 |
0 |
|a QA246
|b .M49 2016
|
100 |
1 |
|
|a Mazur, Barry,
|e author.
|0 http://id.loc.gov/authorities/names/n84023573
|1 http://isni.org/isni/0000000108818163.
|
245 |
1 |
0 |
|a Prime numbers and the Riemann hypothesis /
|c Barry Mazur, William Stein.
|
264 |
|
1 |
|a New York, NY :
|b Cambridge University Press,
|c [2016]
|
300 |
|
|
|a xi, 142 pages ;
|c 24 cm.
|
336 |
|
|
|a text
|b txt
|2 rdacontent.
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia.
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier.
|
500 |
|
|
|a Includes index.
|
504 |
|
|
|a Includes bibliographical references (pages 129-139) and index.
|
505 |
0 |
|
|a The Riemann Hypothesis. Thoughts about numbers ; What are prime numbers? ; "Named" prime numbers ; Sieves ; Questions about primes ; Further questions about primes ; How many primes are there? ; Prime numbers viewed from a distance ; Pure and applied mathematics ; A probabilistic first guess ; What is a "good approximation" ; Square root error and random walks ; What is Riemann's Hypothesis ; The mystery moves to the error term ; Cesàro smoothing ; A view of Li(X) - [pi](X) ; The prime number theorem ; The staircase of primes ; Tinkering with the staircase of primes ; Computer music files and prime numbers ; The word "spectrum" ; Spectra and trigonometric sums ; The spectrum and the staircase of primes ; To our readers of Part I -- Distributions. Slopes of graphs that have no slopes ; Distributions ; Fourier Transforms : second visit ; Fourier Transform of delta ; Trigonometric series ; A sneak preview of Part III --- The Riemann Spectrum of prime numbers. On losing no information ; From primes to the Riemann Spectrum ; How many [theta][subscript i]'s are there? ; Further questions about the Riemann Spectrum ; From the Riemann Spectrum to primes -- Back to Riemann. Building [pi](X) from the Spectrum ; As Riemann envisioned it ; Companions to the zeta function.
|
650 |
|
0 |
|a Riemann hypothesis.
|0 http://id.loc.gov/authorities/subjects/sh2005000907.
|
650 |
|
0 |
|a Numbers, Prime.
|0 http://id.loc.gov/authorities/subjects/sh85093218.
|
650 |
|
7 |
|a Numbers, Prime.
|2 fast
|0 (OCoLC)fst01041241.
|
650 |
|
7 |
|a Riemann hypothesis.
|2 fast
|0 (OCoLC)fst01737612.
|
700 |
1 |
|
|a Stein, William A.,
|d 1974-
|e author.
|0 http://id.loc.gov/authorities/names/n2006076910
|1 http://isni.org/isni/0000000114948319.
|
907 |
|
|
|a .b89486481
|b 03-19-20
|c 11-18-16
|
998 |
|
|
|a eng
|b 12-01-16
|c x
|d m
|e -
|f eng
|g nyu
|h 0
|i 1
|
907 |
|
|
|a .b89486481
|b 07-23-17
|c 11-18-16
|
944 |
|
|
|a MARS - RDA ENRICHED
|
907 |
|
|
|a .b89486481
|b 01-09-17
|c 11-18-16
|
907 |
|
|
|a .b89486481
|b 12-01-16
|c 11-18-16
|
948 |
|
|
|a lr
|
999 |
f |
f |
|i 7b28615a-e0ef-586e-9d63-65cf95cccdbd
|s a51bdcda-ed69-5687-bcb9-e0945778409a
|
952 |
f |
f |
|p Can circulate
|a University of Colorado Boulder
|b Boulder Campus
|c Engineering Math & Physics
|d Closed Stacks - Engineering Math & Physics Library - Stacks
|e QA246 .M49 2016
|h Library of Congress classification
|i book
|m U183072366464
|n 1
|