Lectures on symplectic geometry / Ana Cannas da Silva.

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures,...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Silva, Ana Cannas da
Format: eBook
Language:English
Published: Berlin ; New York : Springer, ©2001.
Series:Lecture notes in mathematics (Springer-Verlag) ; 1764.
Subjects:

MARC

LEADER 00000cam a22000004a 4500
001 b9007655
006 m o d
007 cr |||||||||||
008 010515s2001 gw a ob 001 0 eng c
005 20240423170515.2
019 |a 664272808  |a 771199775 
020 |a 9783540453307  |q (electronic bk.) 
020 |a 354045330X  |q (electronic bk.) 
020 |z 9783540421955 
035 |a (OCoLC)spr50031855 
035 |a (OCoLC)50031855  |z (OCoLC)664272808  |z (OCoLC)771199775 
037 |a spr10.1007/978-3-540-45330-7 
040 |a COO  |b eng  |e pn  |c COO  |d EYM  |d SPLNM  |d YNG  |d OCLCQ  |d DKDLA  |d OCLCO  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCO  |d OCLCF  |d GW5XE  |d OCLCQ  |d UA@  |d YDXCP  |d OCLCQ  |d ESU 
042 |a pcc 
049 |a GWRE 
050 4 |a QA3  |b .L28 no. 1764  |a QA665 
100 1 |a Silva, Ana Cannas da. 
245 1 0 |a Lectures on symplectic geometry /  |c Ana Cannas da Silva. 
260 |a Berlin ;  |a New York :  |b Springer,  |c ©2001. 
300 |a 1 online resource (xii, 217 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1764. 
504 |a Includes bibliographical references (pages 199-206) and index. 
505 0 |a Symplectic Manifolds -- Symplectic Forms -- Symplectic Form on the Cotangent Bundle -- Symplectomorphisms -- Lagrangian Submanifolds -- Generating Functions -- Recurrence -- Local Forms -- Preparation for the Local Theory -- Moser Theorems -- Darboux-Moser-Weinstein Theory -- Weinstein Tubular Neighborhood Theorem -- Contact Manifolds -- Contact Forms -- Contact Dynamics -- Compatible Almost Complex Structures -- Almost Complex Structures -- Compatible Triples -- Dolbeault Theory -- Kähler Manifolds -- Complex Manifolds -- Kähler Forms -- Compact Kähler Manifolds -- Hamiltonian Mechanics -- Hamiltonian Vector Fields -- Variational Principles -- Legendre Transform -- Moment Maps -- Actions -- Hamiltonian Actions -- Symplectic Reduction -- The Marsden-Weinstein-Meyer Theorem -- Reduction -- Moment Maps Revisited -- Moment Map in Gauge Theory -- Existence and Uniqueness of Moment Maps -- Convexity -- Symplectic Toric Manifolds -- Classification of Symplectic Toric Manifolds -- Delzant Construction -- Duistermaat-Heckman Theorems. 
520 |a The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved. 
650 0 |a Symplectic geometry. 
650 7 |a Symplectic geometry.  |2 fast  |0 (OCoLC)fst01140989. 
776 0 8 |i Print version:  |a Silva, Ana Cannas da.  |t Lectures on symplectic geometry.  |d Berlin ; New York : Springer, ©2001  |z 3540421955  |w (DLC) 2001034460  |w (OCoLC)47044948. 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1764. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-540-45330-7  |z Full Text (via Springer) 
907 |a .b90076552  |b 07-02-19  |c 02-01-17 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g gw   |h 0  |i 1 
907 |a .b90076552  |b 05-09-17  |c 02-01-17 
915 |a 4 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2008 English International 
956 |a Springer e-books 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2008 English International 
999 f f |i 6c707bd3-5c67-5ee3-803f-437f4f0dd554  |s 86145bb3-bbe0-5b74-a1bf-a0c5fdab5b83 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA3 .L28 no. 1764 QA665  |h Library of Congress classification  |i Ebooks, Prospector  |n 1