Energy-Recovery Linacs for Commercial Radioisotope Production [electronic resource]

Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Nuclear Physics ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2016.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b9037828
003 CoU
005 20170517223224.2
006 m o d f
007 cr |||||||||||
008 170804e20161119||| ot f0|||||eng|d
035 |a (TOE)ost1332817 
035 |a (TOE)1332817 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 43  |2 edbsc 
086 0 |a E 1.99:doe-muplus--13123 
086 0 |a E 1.99:doe-muplus--13123 
088 |a doe-muplus--13123 
245 0 0 |a Energy-Recovery Linacs for Commercial Radioisotope Production  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of Nuclear Physics ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2016. 
300 |a 20 p. :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 11/19/2016. 
500 |a "doe-muplus--13123" 
500 |a Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States) 
500 |a Muplus, Inc. 
513 |a Final; 
520 3 |a Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (̃100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities. We developed a plan for the Phase II project that started with a Conceptual Design Report (CDR) based on the results of the Phase I studies and concluded with a Technical Design Report (TDR) for a facility to make isotopes that are most attractive based on market analyses. 
520 0 |a Electron Linac; Superconducting; Commercial Production. 
536 |b SC0013123. 
650 7 |a Electron Beams.  |2 local. 
650 7 |a Linear Accelerators.  |2 local. 
650 7 |a Radioisotopes.  |2 local. 
650 7 |a Design.  |2 local. 
650 7 |a Energy Recovery.  |2 local. 
650 7 |a Photoproduction.  |2 local. 
650 7 |a Isotope Production.  |2 local. 
650 7 |a Radiowave Radiation.  |2 local. 
650 7 |a Bremsstrahlung.  |2 local. 
650 7 |a Radioactivation.  |2 local. 
650 7 |a Energy Accounting.  |2 local. 
650 7 |a Mev Range 10-100.  |2 local. 
650 7 |a Photonuclear Reactions.  |2 local. 
650 7 |a Safety Reports.  |2 local. 
650 7 |a Thickness.  |2 local. 
650 7 |a Superconducting Cavity Resonators.  |2 local. 
650 7 |a Beam Optics.  |2 local. 
650 7 |a Energy Losses.  |2 local. 
650 7 |a Targets.  |2 local. 
650 7 |a Particle Accelerators.  |2 edbsc. 
710 1 |a United States.  |b Department of Energy.  |b Office of Nuclear Physics.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/1332817  |z Online Access (via OSTI) 
907 |a .b90378283  |b 03-09-23  |c 02-15-17 
998 |a web  |b 08-04-17  |c f  |d m   |e p  |f eng  |g    |h 0  |i 3 
956 |a Information bridge 
999 f f |i 3ef17b6a-4775-56e6-acc1-51f41cce04f9  |s 33eff7b2-918a-5def-8014-cd30ed7bd1b0 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:doe-muplus--13123  |h Superintendent of Documents classification  |i web  |n 1