Computer-aided design of microfluidic very large scale integration (mVLSI) biochips : design automation, testing, and design-for-testability / Kai Hu, Krishnendu Chakrabarty, Tsung-Yi Ho.

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Authors: Hu, Kai (Author), Chakrabarty, Krishnendu (Author), Ho, Tsung-Yi (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, 2017.
Subjects:

MARC

LEADER 00000cam a2200000I 44500
001 b9128874
003 CoU
005 20170512071946.3
006 m o d
007 cr |||||||||||
008 170407s2017 sz a ob 001 0 eng d
019 |a 982105403  |a 982141484  |a 982241951  |a 982344069  |a 982427123  |a 982500564 
020 |a 9783319562551  |q (electronic bk.) 
020 |a 331956255X  |q (electronic bk.) 
020 |z 9783319562544  |q (print) 
020 |z 3319562541 
035 |a (OCoLC)ocn981912197 
035 |a (OCoLC)981912197  |z (OCoLC)982105403  |z (OCoLC)982141484  |z (OCoLC)982241951  |z (OCoLC)982344069  |z (OCoLC)982427123  |z (OCoLC)982500564 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d GW5XE  |d N$T  |d YDX 
049 |a GWRE 
050 4 |a R857.B5 
100 1 |a Hu, Kai,  |e author. 
245 1 0 |a Computer-aided design of microfluidic very large scale integration (mVLSI) biochips :  |b design automation, testing, and design-for-testability /  |c Kai Hu, Krishnendu Chakrabarty, Tsung-Yi Ho. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2017. 
300 |a 1 online resource (xiii, 142 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
505 0 |a Preface; Acknowledgements; Contents; 1 Introduction; 1.1 Introduction of Microfluidic Biochip Platforms; 1.2 Overview of Flow-Based Microfluidic Biochips; 1.2.1 Structure and Fabrication; 1.2.2 Components; 1.2.3 Applications; 1.3 Challenges and Motivation; 1.3.1 Design Automation; 1.3.2 Contamination Removal; 1.3.3 Defects and Erroneous Operations; 1.4 Outline of the Book; References; 2 Control-Layer Optimization; 2.1 Motivation and Related Prior Work; 2.2 Problem Description, Design Requirements, and Challenges; 2.2.1 Pressure-Propagation Delay; 2.2.2 Requirements in Control-Layer Design. 
505 8 |a 2.2.3 Valve Addressing2.2.4 Routing of Control Channels; 2.2.5 Placement of Control Pins; 2.2.6 Relationship Between Control-Layer Optimization and Clock-Tree Design in VLSI Circuits; 2.3 Problem Formulation; 2.4 Algorithm Design; 2.4.1 Routing Algorithm 1; 2.4.2 Routing Algorithm 2; 2.5 Experimental Results; 2.5.1 Experiments with Two Fabricated Biochips; 2.5.2 Experiments with Synthetic Benchmarks; 2.6 Conclusions; References; 3 Wash Optimization for Cross-Contamination Removal; 3.1 Motivation and Challenges; 3.2 Problem Description and Formulation. 
505 8 |a 3.2.1 Physical Implementability of a Wash Path3.2.2 Execution Time for a Wash Path; 3.3 Search for a Set of Washing Paths; 3.3.1 Generation of the Path Dictionary; 3.3.2 Storage of the Path Dictionary; 3.3.3 Identification of Washing-Path Set; 3.3.4 Washing of Multiple Contaminant Species; 3.3.5 Complexity Analysis; 3.4 Results: Application to Fabricated Biochips; 3.4.1 Results for ChIP; 3.4.2 A Programmable Microfluidic Device with an 8-by-8 Grid; 3.5 Conclusions; References; 4 Fault Modeling, Testing, and Design for Testability; 4.1 Motivation and Challenges. 
505 8 |a 4.2 Defects and Fault Modeling4.3 Testing Strategy; 4.4 Applications to Fabricated Biochip; 4.4.1 Logic Circuit Model; 4.4.2 Test-Pattern Generation and Results; 4.5 Automated Generation of Logic-Circuit Model; 4.5.1 Physical Representation of Boolean Gates in Netlists; 4.5.2 Hierarchical Modeling; 4.5.3 Fault Analysis Based on ATPG Results; 4.6 Other Practical Concerns; 4.6.1 Test Cost; 4.6.2 Dynamic Faults; 4.6.3 Multiple Faults; 4.7 Experimental Demonstration; 4.7.1 Experimental Feasibility Demonstration; 4.7.2 Pattern Set-up Time, Measurement Time and Refresh Time. 
505 8 |a 4.7.3 Experimental Demonstration I: Cell Culture Chip4.7.4 Experimental Demonstration II: WGA Chip; 4.8 Untestable Faults and Design-For-Testability; 4.8.1 Causes of Untestable Faults; 4.8.2 DfT for Flow-Based Microfluidic Biochips; 4.8.3 Demonstration of Proposed DfT Approach; 4.9 Conclusion; References; 5 Techniques for Fault Diagnosis; 5.1 Motivation and Challenges; 5.2 Problem Description; 5.2.1 Single-Defect-Type Assumption; 5.2.2 Syndrome Analysis; 5.2.3 Formulation as a Hitting-Set Problem; 5.3 Algorithm Design; 5.3.1 Complexity Analysis; 5.4 Results: Application to Fabricated Biochips. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed April 18, 2017) 
650 0 |a Biochips  |x Computer-aided design. 
650 0 |a Integrated circuits  |x Very large scale integration  |x Computer-aided design.  |0 http://id.loc.gov/authorities/subjects/sh2008104741. 
700 1 |a Chakrabarty, Krishnendu,  |e author.  |0 http://id.loc.gov/authorities/names/n2002133223  |1 http://isni.org/isni/000000011060464X. 
700 1 |a Ho, Tsung-Yi,  |e author.  |0 http://id.loc.gov/authorities/names/no2008081789. 
776 0 8 |c Original  |z 9783319562544  |z 3319562541  |w (OCoLC)975368442. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-56255-1  |z Full Text (via Springer) 
907 |a .b91288745  |b 03-07-23  |c 05-22-17 
998 |a web  |b 05-22-17  |c b  |d b   |e -  |f eng  |g sz   |h 0  |i 1 
907 |a .b91288745  |b 10-06-17  |c 05-22-17 
944 |a MARS - RDA ENRICHED 
907 |a .b91288745  |b 05-22-17  |c 05-22-17 
915 |a I 
956 |a Springer e-books 
956 |b Springer Engineering eBooks 2017 English+International 
999 f f |i d2c0927b-8529-52e6-83f3-5b191cbb3dbc  |s 4a4012a7-3751-529c-a15a-868438508532 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e R857.B5  |h Library of Congress classification  |i web  |n 1