Environmental and ecological statistics with R / Song S. Qian.

Saved in:
Bibliographic Details
Online Access: Full Text (via EBSCO)
Main Author: Qian, Song S. (Author)
Format: eBook
Language:English
Published: Boca Raton, FL : CRC Press, [2017]
Edition:Second edition.
Series:Applied environmental statistics.
Subjects:
Table of Contents:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Dedication
  • Table of Contents
  • Preface
  • List of Figures
  • List of Tables
  • I: Basic Concepts
  • 1: Introduction
  • 1.1 Tool for Inductive Reasoning
  • 1.2 The Everglades Example
  • 1.2.1 Statistical Issues
  • 1.3 Effects of Urbanization on Stream Ecosystems
  • 1.3.1 Statistical Issues
  • 1.4 PCB in Fish from Lake Michigan
  • 1.4.1 Statistical Issues
  • 1.5 Measuring Harmful Algal Bloom Toxin
  • 1.6 Bibliography Notes
  • 1.7 Exercise
  • 2: A Crash Course on R
  • 2.1 What is R?
  • 2.2 Getting Started with R
  • 2.2.1 R Commands and Scripts
  • 2.2.2 R Packages
  • 2.2.3 R Working Directory
  • 2.2.4 Data Types
  • 2.2.5 R Functions
  • 2.3 Getting Data into R
  • 2.3.1 Functions for Creating Data
  • 2.3.2 A Simulation Example
  • 2.4 Data Preparation
  • 2.4.1 Data Cleaning
  • 2.4.1.1 Missing Values
  • 2.4.2 Subsetting and Combining Data
  • 2.4.3 Data Transformation
  • 2.4.4 Data Aggregation and Reshaping
  • 2.4.5 Dates
  • 2.5 Exercises
  • 3: Statistical Assumptions
  • 3.1 The Normality Assumption
  • 3.2 The Independence Assumption
  • 3.3 The Constant Variance Assumption
  • 3.4 Exploratory Data Analysis
  • 3.4.1 Graphs for Displaying Distributions
  • 3.4.2 Graphs for Comparing Distributions
  • 3.4.3 Graphs for Exploring Dependency among Variables
  • 3.5 From Graphs to Statistical Thinking
  • 3.6 Bibliography Notes
  • 3.7 Exercises
  • 4: Statistical Inference
  • 4.1 Introduction
  • 4.2 Estimation of Population Mean and Confidence Interval
  • 4.2.1 Bootstrap Method for Estimating Standard Error
  • 4.3 Hypothesis Testing
  • 4.3.1 t-Test
  • 4.3.2 Two-Sided Alternatives
  • 4.3.3 Hypothesis Testing Using the Confidence Interval
  • 4.4 A General Procedure
  • 4.5 Nonparametric Methods for Hypothesis Testing
  • 4.5.1 Rank Transformation.
  • 7: Classification and Regression Tree
  • 7.1 The Willamette River Example
  • 7.2 Statistical Methods
  • 7.2.1 Growing and Pruning a Regression Tree
  • 7.2.2 Growing and Pruning a Classification Tree
  • 7.2.3 Plotting Options
  • 7.3 Comments
  • 7.3.1 CART as a Model Building Tool
  • 7.3.2 Deviance and Probabilistic Assumptions
  • 7.3.3 CART and Ecological Threshold
  • 7.4 Bibliography Notes
  • 7.5 Exercises
  • 8: Generalized Linear Model
  • 8.1 Logistic Regression
  • 8.1.1 Example: Evaluating the Effectiveness of UV as a Drinking Water Disinfectant
  • 8.1.2 Statistical Issues
  • 8.1.3 Fitting the Model in R
  • 8.2 Model Interpretation
  • 8.2.1 Logit Transformation
  • 8.2.2 Intercept
  • 8.2.3 Slope
  • 8.2.4 Additional Predictors
  • 8.2.5 Interaction
  • 8.2.6 Comments on the Crypto Example
  • 8.3 Diagnostics
  • 8.3.1 Binned Residuals Plot
  • 8.3.2 Overdispersion
  • 8.3.3 Seed Predation by Rodents: A Second Example of Logistic Regression
  • 8.4 Poisson Regression Model
  • 8.4.1 Arsenic Data from Southwestern Taiwan
  • 8.4.2 Poisson Regression
  • 8.4.3 Exposure and Offset
  • 8.4.4 Overdispersion
  • 8.4.5 Interactions
  • 8.4.6 Negative Binomial
  • 8.5 Multinomial Regression
  • 8.5.1 Fitting a Multinomial Regression Model in R
  • 8.5.2 Model Evaluation
  • 8.6 The Poisson-Multinomial Connection
  • 8.7 Generalized Additive Models
  • 8.7.1 Example: Whales in the Western Antarctic Peninsula
  • 8.7.1.1 The Data
  • 8.7.1.2 Variable Selection Using CART
  • 8.7.1.3 Fitting GAM
  • 8.7.1.4 Summary
  • 8.8 Bibliography Notes
  • 8.9 Exercises
  • III: Advanced Statistical Modeling
  • 9: Simulation for Model Checking and Statistical Inference
  • 9.1 Simulation
  • 9.2 Summarizing Regression Models Using Simulation
  • 9.2.1 An Introductory Example
  • 9.2.2 Summarizing a Linear Regression Model
  • 9.2.2.1 Re-transformation Bias.
  • 9.2.3 Simulation for Model Evaluation
  • 9.2.4 Predictive Uncertainty
  • 9.3 Simulation Based on Re-sampling
  • 9.3.1 Bootstrap Aggregation
  • 9.3.2 Example: Confidence Interval of the CART-Based Threshold
  • 9.4 Bibliography Notes
  • 9.5 Exercises
  • 10: Multilevel Regression
  • 10.1 From Stein's Paradox to Multilevel Models
  • 10.2 Multilevel Structure and Exchangeability
  • 10.3 Multilevel ANOVA
  • 10.3.1 Intertidal Seaweed Grazers
  • 10.3.2 Background N2O Emission from Agriculture Fields
  • 10.3.3 When to Use the Multilevel Model?
  • 10.4 Multilevel Linear Regression
  • 10.4.1 Nonnested Groups
  • 10.4.2 Multiple Regression Problems
  • 10.4.3 The ELISA Example-An Unintended Multilevel Modeling Problem
  • 10.5 Nonlinear Multilevel Models
  • 10.6 Generalized Multilevel Models
  • 10.6.1 Exploited Plant Monitoring-Galax
  • 10.6.1.1 A Multilevel Poisson Model
  • 10.6.1.2 A Multilevel Logistic Regression Model
  • 10.6.2 Cryptosporidium in U.S. Drinking Water-A Poisson Regression Example
  • 10.6.3 Model Checking Using Simulation
  • 10.7 Concluding Remarks
  • 10.8 Bibliography Notes
  • 10.9 Exercises
  • 11: Evaluating Models Based on Statistical Signicance Testing
  • 11.1 Introduction
  • 11.2 Evaluating TITAN
  • 11.2.1 A Brief Description of TITAN
  • 11.2.2 Hypothesis Testing in TITAN
  • 11.2.3 Type I Error Probability
  • 11.2.4 Statistical Power
  • 11.2.5 Bootstrapping
  • 11.2.6 Community Threshold
  • 11.2.7 Conclusions
  • 11.3 Exercises
  • Bibliography
  • Index.
  • 4.5.2 Wilcoxon Signed Rank Test
  • 4.5.3 Wilcoxon Rank Sum Test
  • 4.5.4 A Comment on Distribution-Free Methods
  • 4.6 Significance Level α, Power 1
  • β, and p-Value
  • 4.7 One-Way Analysis of Variance
  • 4.7.1 Analysis of Variance
  • 4.7.2 Statistical Inference
  • 4.7.3 Multiple Comparisons
  • 4.8 Examples
  • 4.8.1 The Everglades Example
  • 4.8.2 Kemp's Ridley Turtles
  • 4.8.3 Assessing Water Quality Standard Compliance
  • 4.8.4 Interaction between Red Mangrove and Sponges
  • 4.9 Bibliography Notes
  • 4.10 Exercises
  • II: Statistical Modeling
  • 5: Linear Models
  • 5.1 Introduction
  • 5.2 From t-test to Linear Models
  • 5.3 Simple and Multiple Linear Regression Models
  • 5.3.1 The Least Squares
  • 5.3.2 Regression with One Predictor
  • 5.3.3 Multiple Regression
  • 5.3.4 Interaction
  • 5.3.5 Residuals and Model Assessment
  • 5.3.6 Categorical Predictors
  • 5.3.7 Collinearity and the Finnish Lakes Example
  • 5.4 General Considerations in Building a Predictive Model
  • 5.5 Uncertainty in Model Predictions
  • 5.5.1 Example: Uncertainty in Water Quality Measurements
  • 5.6 Two-Way ANOVA
  • 5.6.1 ANOVA as a Linear Model
  • 5.6.2 More Than One Categorical Predictor
  • 5.6.3 Interaction
  • 5.7 Bibliography Notes
  • 5.8 Exercises
  • 6: Nonlinear Models
  • 6.1 Nonlinear Regression
  • 6.1.1 Piecewise Linear Models
  • 6.1.2 Example: U.S. Lilac First Bloom Dates
  • 6.1.3 Selecting Starting Values
  • 6.2 Smoothing
  • 6.2.1 Scatter Plot Smoothing
  • 6.2.2 Fitting a Local Regression Model
  • 6.3 Smoothing and Additive Models
  • 6.3.1 Additive Models
  • 6.3.2 Fitting an Additive Model
  • 6.3.3 Example: The North American Wetlands Database
  • 6.3.4 Discussion: The Role of Nonparametric Regression Models in Science
  • 6.3.5 Seasonal Decomposition of Time Series
  • 6.3.5.1 The Neuse River Example
  • 6.4 Bibliographic Notes
  • 6.5 Exercises.