Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Corporate Author: Pacific Northwest National Laboratory (U.S.) (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2017.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b9164578
003 CoU
005 20170614223547.7
006 m o d f
007 cr |||||||||||
008 170804e20170512||| o| f0|||||eng|d
035 |a (TOE)ost1358485 
035 |a (TOE)1358485 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 54  |2 edbsc 
086 0 |a E 1.99:pnnl-sa--121575 
086 0 |a E 1.99:pnnl-sa--121575 
088 |a pnnl-sa--121575 
245 0 0 |a Exploring precipitation pattern scaling methodologies and robustness among CMIP5 models  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy. ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2017. 
300 |a p. 1889-1902 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 05/12/2017. 
500 |a "pnnl-sa--121575" 
500 |a "KP1703030" 
500 |a Geoscientific Model Development (Online) 10 5 ISSN 1991-9603 AM. 
500 |a Ben Kravitz; Cary Lynch; Corinne Hartin; Ben Bond-Lamberty. 
520 3 |a <p>Pattern scaling is a well-established method for approximating modeled spatial distributions of changes in temperature by assuming a time-invariant pattern that scales with changes in global mean temperature. We compare two methods of pattern scaling for annual mean precipitation (regression and epoch difference) and evaluate which method is <q>better</q> in particular circumstances by quantifying their robustness to interpolation/extrapolation in time, inter-model variations, and inter-scenario variations. Both the regression and epoch-difference methods (the two most commonly used methods of pattern scaling) have good absolute performance in reconstructing the climate model output, measured as an area-weighted root mean square error. We decompose the precipitation response in the RCP8.5 scenario into a CO<sub>2</sub> portion and a non-CO<sub>2</sub> portion. Extrapolating RCP8.5 patterns to reconstruct precipitation change in the RCP2.6 scenario results in large errors due to violations of pattern scaling assumptions when this CO<sub>2</sub>-/non-CO<sub>2</sub>-forcing decomposition is applied. As a result, the methodologies discussed in this paper can help provide precipitation fields to be utilized in other models (including integrated assessment models or impacts assessment models) for a wide variety of scenarios of future climate change.</p> 
536 |b AC05-76RL01830. 
650 7 |a Environmental Sciences.  |2 edbsc. 
710 2 |a Pacific Northwest National Laboratory (U.S.).  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/1358485  |z Online Access (via OSTI) 
907 |a .b91645785  |b 03-09-23  |c 08-04-17 
998 |a web  |b 08-04-17  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i 191d3a53-2d46-5d17-9eae-669a8464f2b4  |s ee355344-882e-5591-9afc-07b7497aa6ba 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:pnnl-sa--121575  |h Superintendent of Documents classification  |i web  |n 1