Lectures on infinite-dimensional Lie algebra / Minoru Wakimoto.

The representation theory of affine lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three valuable works on it, written by Victor G Kac. This volume begins with a survey and review of the material treat...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Wakimoto, Minoru, 1942-
Other title:Infinite-dimensional Lie algebra.
Format: eBook
Language:English
Published: River Edge, N.J. : World Scientific, ©2001.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b9616860
003 CoU
005 20220722060319.0
006 m o d
007 cr |||||||||||
008 081107s2001 nju ob 001 0 eng d
019 |a 505142837  |a 646768575  |a 764500548  |a 815755950  |a 910743210  |a 961533845  |a 962630739 
020 |a 9789812810700  |q (electronic bk.) 
020 |a 9812810706  |q (electronic bk.) 
020 |a 128195635X 
020 |a 9781281956354 
020 |z 9810241283 
020 |z 9810241291  |q (pbk.) 
035 |a (OCoLC)ebqac269468827 
035 |a (OCoLC)269468827  |z (OCoLC)505142837  |z (OCoLC)646768575  |z (OCoLC)764500548  |z (OCoLC)815755950  |z (OCoLC)910743210  |z (OCoLC)961533845  |z (OCoLC)962630739 
037 |a ebqac1681623 
040 |a N$T  |b eng  |e pn  |c N$T  |d N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d DKDLA  |d OCLCQ  |d NLGGC  |d I9W  |d EBLCP  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d LOA  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA252.3  |b .W338 2001eb 
100 1 |a Wakimoto, Minoru,  |d 1942- 
245 1 0 |a Lectures on infinite-dimensional Lie algebra /  |c Minoru Wakimoto. 
246 3 0 |a Infinite-dimensional Lie algebra. 
260 |a River Edge, N.J. :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (x, 444 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references (pages 429-440) and index. 
505 0 |a 1. Preliminaries on affine Lie algebras. 1.1. Affine Lie algebras. 1.2. Extended affine Weyl group. 1.3. Some formulas for finite-dimensional simple Lie algebras -- 2. Characters of integrable representations. 2.1. Weyl-Kac character formula. 2.2. Specialized characters. 2.3. Product expression of characters. 2.4. Modular transformation -- 3. Principal admissible weights. 3.1. Admissible weights. 3.2. Principal admissible weights. 3.3. Characters of principal admissible representations. 3.4. Parametrization of principal admissible weights. 3.5. Modular transformation -- 4. Residue of principal admissible characters. 4.1. Non-degenerate principal admissible weights. 4.2. Modular transformation of residue. 4.3. Fusion coefficients -- 5. Characters of affine orbifolds. 5.1. Characters of finite groups. 5.2. Fusion datum. 5.3. Characters of affine orbifolds -- 6. Operator calculus. 6.1. Operator products. 6.2. Boson-fermion correspondence -- 7. Branching functions. 7.1. Virasoro modules. 7.2. Virasoro modules of central charge-[symbol]. 7.3. Branching functions. 7.4. Tensor product decomposition -- 8. W-algebra. 8.1. Free fermionic fields [symbol](z) and [symbol](z). 8.2. Free fermionic fields [symbol](z) and [symbol](z). 8.3. Ghost field associated to a simple Lie algebra. 8.4. BRST complex. 8.5. Euler-Poincaré characteristics -- 9. Vertex representations for affine Lie algebras. 9.1. Simple examples of vertex operators. 9.2. Basic representations of [symbol](2, C). 9.3. Construction of basic representation -- 10. Soliton equations. 10.1. Hirota bilinear differential operators. 10.2. KdV equation and Hirota bilinear differential equations. 10.3. Hirota equations associated to the basic representation. 10.4. Non-linear Schrödinger equations. 
520 |a The representation theory of affine lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three valuable works on it, written by Victor G Kac. This volume begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations. 
588 0 |a Print version record. 
650 0 |a Infinite dimensional Lie algebras. 
650 0 |a Lie algebras. 
650 7 |a Infinite dimensional Lie algebras.  |2 fast  |0 (OCoLC)fst00972423. 
650 7 |a Lie algebras.  |2 fast  |0 (OCoLC)fst00998125. 
776 0 8 |i Print version:  |a Wakimoto, Minoru, 1942-  |t Lectures on infinite-dimensional Lie algebra.  |d River Edge, N.J. : World Scientific, ©2001  |z 9789810241285  |w (DLC) 2005297915  |w (OCoLC)60596262. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1681623  |z Full Text (via ProQuest) 
907 |a .b96168602  |b 02-20-23  |c 10-03-17 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g nju  |h 0  |i 2 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i 8a326d9e-7995-501f-bd89-0f5c3be3e92f  |s 49c4ada8-4694-51b6-9ff1-fc7b91ba6e1f 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA252.3 .W338 2001eb  |h Library of Congress classification  |i web  |n 1