Elliptic theory and noncommutative geometry : nonlocal elliptic operators / Vladimir E. Nazaikinskii, Anton Yu. Savin, Boris Yu. Sternin.

The book deals with nonlocal elliptic differential operators. These are operators whose coefficients involve shifts generated by diffeomorphisms of the manifold on which the operators are defined. The main goal of the study is to relate analytical invariants (in particular, the index) of such operat...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Nazaĭkinskiĭ, V. E.
Other Authors: Savin, Anton Yu, Sternin, B. I︠U︡
Format: eBook
Language:English
Published: Basel ; Boston : Birkhäuser, ©2008.
Series:Operator theory, advances and applications ; v. 183.
Operator theory, advances and applications. Advances in partial differential equations.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b9617045
003 CoU
005 20220722060319.0
006 m o d
007 cr |||||||||||
008 081117s2008 sz a ob 001 0 eng d
019 |a 298553032  |a 316866027  |a 336346989  |a 443714458  |a 466347806  |a 605692400  |a 607318877  |a 646756345  |a 966183092  |a 991964532  |a 995010489  |a 1038691262  |a 1060665959  |a 1064019535  |a 1078872424  |a 1086929454  |a 1097339910  |a 1153500331 
020 |a 9783764387754  |q (e-isbn) 
020 |a 3764387750  |q (e-isbn) 
020 |z 9783764387747 
020 |z 3764387742 
024 7 |a 10.1007/978-3-7643-8775-4 
035 |a (OCoLC)ebqac272313415 
035 |a (OCoLC)272313415  |z (OCoLC)298553032  |z (OCoLC)316866027  |z (OCoLC)336346989  |z (OCoLC)443714458  |z (OCoLC)466347806  |z (OCoLC)605692400  |z (OCoLC)607318877  |z (OCoLC)646756345  |z (OCoLC)966183092  |z (OCoLC)991964532  |z (OCoLC)995010489  |z (OCoLC)1038691262  |z (OCoLC)1060665959  |z (OCoLC)1064019535  |z (OCoLC)1078872424  |z (OCoLC)1086929454  |z (OCoLC)1097339910  |z (OCoLC)1153500331 
037 |a ebqac367337 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d OSU  |d CEF  |d MHW  |d OCLCQ  |d N$T  |d YDXCP  |d OTZ  |d NUI  |d MND  |d U5D  |d E7B  |d UBC  |d EBLCP  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d NLGGC  |d LOA  |d COCUF  |d Z5A  |d PIFAG  |d ZCU  |d MERUC  |d ESU  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d OCLCQ  |d INT  |d OCLCQ  |d WYU  |d YOU  |d CANPU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d CNTRU  |d W2U  |d UKAHL  |d OCLCQ  |d UKCRE  |d EUN  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA329.42  |b .N396 2008eb 
100 1 |a Nazaĭkinskiĭ, V. E. 
245 1 0 |a Elliptic theory and noncommutative geometry :  |b nonlocal elliptic operators /  |c Vladimir E. Nazaikinskii, Anton Yu. Savin, Boris Yu. Sternin. 
260 |a Basel ;  |a Boston :  |b Birkhäuser,  |c ©2008. 
300 |a 1 online resource (xii, 224 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a text file. 
347 |b PDF. 
490 1 |a Operator theory, advances and applications ;  |v v. 183.  |a Advances in partial differential equations. 
504 |a Includes bibliographical references (pages 217-221) and index. 
505 0 |a Introduction; Nonlocal Functions and Bundles; Nonlocal Elliptic Operators; Elliptic Operators over C *-Algebras; Homotopy Classification; Analytic Invariants; Bott Periodicity; Direct Image and Index Formulas in K -Theory; Chern Character; Cohomological Index Formula; Cohomological Formula for the .-Index; Index of Nonlocal Operators over C *-Algebras; Index Formula on the Noncommutative Torus; An Application of Higher Traces; Index Formula for a Finite Group. 
520 |a The book deals with nonlocal elliptic differential operators. These are operators whose coefficients involve shifts generated by diffeomorphisms of the manifold on which the operators are defined. The main goal of the study is to relate analytical invariants (in particular, the index) of such operators to topological invariants of the manifold itself. This problem can be solved by modern methods of noncommutative geometry. To make the book self-contained, the authors have included necessary geometric material (C*-algebras and their K-theory, cyclic homology, etc.) 
588 0 |a Print version record. 
650 0 |a Elliptic operators. 
650 0 |a Noncommutative differential geometry. 
650 7 |a Elliptic operators.  |2 fast  |0 (OCoLC)fst00908174. 
650 7 |a Noncommutative differential geometry.  |2 fast  |0 (OCoLC)fst01038608. 
700 1 |a Savin, Anton Yu. 
700 1 |a Sternin, B. I︠U︡ 
776 0 8 |i Print version:  |a Nazaĭkinskiĭ, V.E.  |t Elliptic theory and noncommutative geometry.  |d Basel ; Boston : Birkhäuser, ©2008  |z 3764387742  |w (DLC) 2008924711  |w (OCoLC)213479423. 
830 0 |a Operator theory, advances and applications ;  |v v. 183. 
830 0 |a Operator theory, advances and applications.  |p Advances in partial differential equations. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=367337  |z Full Text (via ProQuest) 
907 |a .b96170451  |b 02-20-23  |c 10-03-17 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g sz   |h 0  |i 2 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i ca143d6e-8ce2-504e-82f5-fc2581713582  |s e495740e-20e3-5fa3-979e-8cd43eb6ceec 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA329.42 .N396 2008eb  |h Library of Congress classification  |i web  |n 1