Gradient flows : in metric spaces and in the space of probability measures / Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré

This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It consists of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the space of probabilit...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Ambrosio, Luigi
Other Authors: Gigli, Nicola, Savaré, Giuseppe
Format: eBook
Language:English
Published: Basel ; Boston : Birkhäuser, ©2008.
Edition:2nd ed.
Series:Lectures in mathematics ETH Zürich.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b9619053
003 CoU
005 20220813060421.0
006 m o d
007 cr |||||||||||
008 090213s2008 sz a ob 001 0 eng d
019 |a 407604398  |a 441825285  |a 646038121  |a 858880514  |a 880315706  |a 961547703  |a 962603750  |a 988449612  |a 991918696  |a 994809542  |a 1035668429  |a 1037903834  |a 1038665363  |a 1044252141  |a 1056338821  |a 1060663775  |a 1061029075  |a 1069503113  |a 1077239757  |a 1087030284  |a 1103255306  |a 1126476620  |a 1135574646 
020 |a 9783764387228 
020 |a 376438722X 
020 |a 9783764387211  |q (paper) 
020 |a 3764387211  |q (paper) 
020 |a 1281851361 
020 |a 9781281851369 
020 |a 9786611851361 
020 |a 6611851364 
020 |a 9783764398088  |q (print) 
020 |a 3764398086 
024 7 |a 10.1007/978-3-7643-8722-8 
024 8 |a 10.1007/978-3-7643-8 
035 |a (OCoLC)ebqac304564764 
035 |a (OCoLC)304564764  |z (OCoLC)407604398  |z (OCoLC)441825285  |z (OCoLC)646038121  |z (OCoLC)858880514  |z (OCoLC)880315706  |z (OCoLC)961547703  |z (OCoLC)962603750  |z (OCoLC)988449612  |z (OCoLC)991918696  |z (OCoLC)994809542  |z (OCoLC)1035668429  |z (OCoLC)1037903834  |z (OCoLC)1038665363  |z (OCoLC)1044252141  |z (OCoLC)1056338821  |z (OCoLC)1060663775  |z (OCoLC)1061029075  |z (OCoLC)1069503113  |z (OCoLC)1077239757  |z (OCoLC)1087030284  |z (OCoLC)1103255306  |z (OCoLC)1126476620  |z (OCoLC)1135574646 
037 |a ebqac417466 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d OCLCQ  |d MYPMP  |d EBLCP  |d OCLCO  |d N$T  |d YDXCP  |d MERUC  |d UAB  |d E7B  |d IDEBK  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d VT2  |d SLY  |d OCLCQ  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d ESU  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d CEF  |d NRAMU  |d CRU  |d INT  |d OCLCQ  |d WYU  |d ICG  |d CANPU  |d OCLCQ  |d DKC  |d OCLCQ  |d CNTRU  |d UKAHL  |d OCLCQ  |d SFB  |d AUD  |d DCT  |d LQU  |d UKBTH  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA312  |b .A58 2008eb 
100 1 |a Ambrosio, Luigi. 
245 1 0 |a Gradient flows :  |b in metric spaces and in the space of probability measures /  |c Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré 
250 |a 2nd ed. 
260 |a Basel ;  |a Boston :  |b Birkhäuser,  |c ©2008. 
300 |a 1 online resource (vii, 334 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a text file. 
347 |b PDF. 
490 1 |a Lectures in mathematics ETH Zürich. 
504 |a Includes bibliographical references (pages 321-331) and index. 
505 0 |a 1. Introduction -- Part I. Gradient flow in metric spaces -- 2. Curves and gradients in metric spaces -- 3. Existence of curves of maximal slope -- 4. Proofs of the convergence theorems -- 5. Generation of contraction semigroups -- Part II. Gradient flow in the Wasserstein spaces of probability measures -- 6. Preliminary results on measure theory -- 7. The optimal transportation problem -- 8. The Wasserstein distance and its behaviour along geodesics -- 9. A.c. curves and the continuity equation -- 10. Convex functionals -- 11. Metric slope and subdifferential calculus -- 12. Gradient flows and curves of maximal slope -- 13. Appendix -- Bibliography. 
520 |a This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It consists of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance. The two parts have some connections, due to the fact that the space of probability measures provides an important model to which the "metric" theory applies, but the book is conceived in such a way that the two parts can be read independently, the first one by the reader more interested in non-smooth analysis and analysis in metric spaces, and the second one by the reader more orientated towards the applications in partial differential equations, measure theory and probability. 
546 |a English. 
588 0 |a Print version record. 
650 0 |a Measure theory. 
650 0 |a Metric spaces. 
650 0 |a Differential equations, Partial. 
650 0 |a Monotone operators. 
650 0 |a Evolution equations, Nonlinear. 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484. 
650 7 |a Evolution equations, Nonlinear.  |2 fast  |0 (OCoLC)fst00917335. 
650 7 |a Measure theory.  |2 fast  |0 (OCoLC)fst01013175. 
650 7 |a Metric spaces.  |2 fast  |0 (OCoLC)fst01018813. 
650 7 |a Monotone operators.  |2 fast  |0 (OCoLC)fst01025722. 
700 1 |a Gigli, Nicola. 
700 1 |a Savaré, Giuseppe. 
776 0 8 |i Print version:  |a Ambrosio, Luigi.  |t Gradient flows.  |b 2nd ed.  |d Basel ; Boston : Birkhäuser, ©2008  |z 9783764387211  |z 3764387211  |w (OCoLC)212432128. 
830 0 |a Lectures in mathematics ETH Zürich. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=417466  |z Full Text (via ProQuest) 
907 |a .b9619053x  |b 02-20-23  |c 10-03-17 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g sz   |h 0  |i 2 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i 2d611077-928e-573a-be3d-ebcc66bb1b90  |s 8f998485-8331-5196-b6ae-17c1340be915 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA312 .A58 2008eb  |h Library of Congress classification  |i web  |n 1