Introduction to mathematical elasticity / Leonid P. Lebedev, Michael J. Cloud.

This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dim...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Lebedev, L. P.
Other Authors: Cloud, Michael J.
Format: eBook
Language:English
Published: Hackensack, NJ : World Scientific, ©2009.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b9650111
003 CoU
005 20210903045420.0
006 m o d
007 cr |||||||||||
008 101025s2009 njua ob 001 0 eng d
019 |a 712995067  |a 719420445  |a 729020097  |a 743436977  |a 748608530  |a 816581950  |a 961531672  |a 962574997  |a 968307779  |a 988449403  |a 992108054  |a 1037761708  |a 1038671957  |a 1113507178  |a 1153502177 
020 |a 9789814273732  |q (electronic bk.) 
020 |a 9814273732  |q (electronic bk.) 
020 |z 9789814273725 
020 |z 9814273724 
035 |a (OCoLC)ebqac671655175 
035 |a (OCoLC)671655175  |z (OCoLC)712995067  |z (OCoLC)719420445  |z (OCoLC)729020097  |z (OCoLC)743436977  |z (OCoLC)748608530  |z (OCoLC)816581950  |z (OCoLC)961531672  |z (OCoLC)962574997  |z (OCoLC)968307779  |z (OCoLC)988449403  |z (OCoLC)992108054  |z (OCoLC)1037761708  |z (OCoLC)1038671957  |z (OCoLC)1113507178  |z (OCoLC)1153502177 
037 |a ebqac1681613 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d FVL  |d OCLCQ  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d NLGGC  |d IDEBK  |d EBLCP  |d MHW  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d COCUF  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d UHL  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCQ  |d OCLCO 
049 |a GWRE 
050 4 |a QA931  |b .L38 2009eb 
100 1 |a Lebedev, L. P. 
245 1 0 |a Introduction to mathematical elasticity /  |c Leonid P. Lebedev, Michael J. Cloud. 
260 |a Hackensack, NJ :  |b World Scientific,  |c ©2009. 
300 |a 1 online resource (xv, 300 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references (page 293) and index. 
505 0 |a 1. Models and ideas of classical mechanics. 1.1. Orientation. 1.2. Some words on the fundamentals of our subject. 1.3. Metric spaces and spaces of particles. 1.4. Vectors and vector spaces. 1.5. Normed spaces and inner product spaces. 1.6. Forces. 1.7. Equilibrium and motion of a rigid body. 1.8. D'Alembert's principle. 1.9. The motion of a system of particles. 1.10. The rigid body. 1.11. Motion of a system of particles ; comparison of trajectories ; notion of operator. 1.12. Matrix operators and matrix equations. 1.13. Complete spaces. 1.14. Completion theorem. 1.15. Lebesgue integration and the L[symbol] spaces. 1.16. Orthogonal decomposition of Hilbert Space. 1.17. Work and energy. 1.18. Virtual work principle. 1.19. Lagrange's equations of the second kind. 1.20. Problem of minimum of a functional. 1.21. Hamilton's principle. 1.22. Energy conservation revisited -- 2. Simple elastic models. 2.1. Introduction. 2.2. Two main principles of equilibrium and motion for bodies in continuum mechanics. 2.3. Equilibrium of a spring. 2.4. Equilibrium of a string. 2.5. Equilibrium boundary value problems for a string. 2.6. Generalized formulation of the equilibrium problem for a string. 2.7. Virtual work principle for a string. 2.8. Riesz representation theorem. 2.9. Generalized setup of the dirichlet problem for a string. 2.10. First theorems of imbedding. 
505 8 |a 2.11. Generalized setup of the dirichlet problem for a string, continued. 2.12. Neumann problem for the string. 2.13. The generalized solution of linear mechanical problems and the principle of minimum total energy. 2.14. Nonlinear model of a membrane. 2.15. Linear membrane theory : Poisson's equation. 2.16. Generalized setup of the dirichlet problem for a linear membrane. 2.17. Other membrane equilibrium problems. 2.18. Banach's contraction mapping principle -- 3. Theory of elasticity : statics and dynamics. 3.1. Introduction. 3.2. An elastic bar under stretching. 3.3. Bending of a beam. 3.4. Generalized solutions to the equilibrium problem for a beam. 3.5. Generalized setup : rough qualitative discussion. 3.6. Pressure and stresses. 3.7. Vectors and tensors. 3.8. The Cauchy stress tensor, continued. 3.9. Basic tensor calculus in curvilinear coordinates. 3.10. Euler and Lagrange descriptions of continua. 3.11. Strain tensors. 3.12. The virtual work principle. 3.13. Hooke's law in three dimensions. 3.14. The equilibrium equations of linear elasticity in displacements. 3.15. Virtual work principle in linear elasticity. 3.16. Generalized setup of elasticity problems. 3.17. Existence theorem for an elastic body. 3.18. Equilibrium of a free elastic body. 3.19. Variational methods for equilibrium problems. 3.20. A brief but important remark. 3.21. Countable sets and separable spaces. 3.22. Fourier series. 3.23. Problem of vibration for elastic structures. 3.24. Self-adjointness of A and its consequences. 3.25. Compactness of A. 3.26. Riesz-Fredholm theory for a linear, self-adjoint, compact operator in a Hilbert Space. 3.27. Weak convergence in Hilbert Space. 3.28. Completeness of the system of eigenvectors of a self-adjoint, compact, strictly positive linear operator. 3.29. Other standard models of elasticity. 
520 |a This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability. Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems. 
588 0 |a Print version record. 
650 0 |a Elasticity. 
650 7 |a Elasticity.  |2 fast  |0 (OCoLC)fst00904211. 
700 1 |a Cloud, Michael J. 
776 0 8 |i Print version:  |a Lebedev, L.P.  |t Introduction to mathematical elasticity.  |d Hackensack, NJ : World Scientific, ©2009  |z 9789814273725  |w (OCoLC)299716437. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1681613  |z Full Text (via ProQuest) 
907 |a .b9650111x  |b 09-08-21  |c 10-03-17 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g nju  |h 0  |i 2 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i b0d52d65-aa1a-5849-ac76-ecd5b2c947e0  |s ecd2cc77-e4ac-52ae-8da3-afbc815c0528 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA931 .L38 2009eb  |h Library of Congress classification  |i web  |n 1