Wilson Lines in Quantum Field Theory / Igor Olegovich Cherednikov, Tom Mertens, Frederik F. Van der Veken.

The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. Itteaches how to perform independently with some elementary calculationson Wilson lines, and shows the recent develop...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Cherednikov, Igor Olegovich
Other Authors: Mertens, Tom, Veken, Frederik F. Van der
Format: eBook
Language:English
Published: Berlin ; München ; Boston : DE GRUYTER, 2014.
Edition:2014.
Series:De Gruyter studies in mathematical physics.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b9721227
003 CoU
005 20221118052825.0
006 m o d
007 cr |||||||||||
008 141024t20142014gw fob 001 0 eng d
019 |a 898769798  |a 903192745  |a 1132425425  |a 1264969725 
020 |a 9783110309218 
020 |a 3110309211 
020 |a 9783110382938 
020 |a 3110382938 
020 |z 9783110309102 
020 |z 3110309106 
020 |z 9783110309225 
020 |z 311030922X 
020 |a 9783110651690 
020 |a 3110651696 
024 7 0 |a 10.1515/9783110309218 
035 |a (OCoLC)ebqac897443914 
035 |a (OCoLC)897443914  |z (OCoLC)898769798  |z (OCoLC)903192745  |z (OCoLC)1132425425  |z (OCoLC)1264969725 
037 |a ebqac1663082 
040 |a OTZ  |b eng  |e pn  |c OTZ  |d EBLCP  |d CN3GA  |d E7B  |d YDXCP  |d OCLCF  |d N$T  |d DEBSZ  |d IDEBK  |d DXU  |d ZCU  |d MERUC  |d CUY  |d OCLCQ  |d DEBBG  |d VTS  |d ICG  |d D6H  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA174.2  |b .C45 2014 
066 |c (S 
100 1 |a Cherednikov, Igor Olegovich. 
245 1 0 |a Wilson Lines in Quantum Field Theory /  |c Igor Olegovich Cherednikov, Tom Mertens, Frederik F. Van der Veken. 
250 |a 2014. 
264 1 |a Berlin ;  |a München ;  |a Boston :  |b DE GRUYTER,  |c 2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a De Gruyter Studies in Mathematical Physics ;  |v v. 24. 
504 |a Includes bibliographical references (pages 249-251) and index. 
505 0 |a Preface; 1 Introduction: What are Wilson lines?; 2 Prolegomena to the mathematical theory of Wilson lines; 2.1 Shuffle algebra and the idea of algebraic paths; 2.1.1 Shuffle algebra: Definition and properties; 2.1.2 Chen's algebraic paths; 2.1.3 Chen iterated integrals; 2.2 Gauge fields as connections on a principal bundle; 2.2.1 Principal fiber bundle, sections and associated vector bundle; 2.2.2 Gauge field as a connection; 2.2.3 Horizontal lift and parallel transport; 2.3 Solving matrix differential equations: Chen iterated integrals; 2.3.1 Derivatives of a matrix function. 
505 8 |6 880-01  |a 3.4 The group of generalized loops3.5 Generalized loops and the Ambrose-Singer theorem; 3.6 The Lie algebra of the group of the generalized loops; 4 Shape variations in the loop space; 4.1 Path derivatives; 4.2 Area derivative; 4.3 Variational calculus; 4.4 Fréchet derivative in a generalized loop space; 5 Wilson lines in high-energy QCD; 5.1 Eikonal approximation; 5.1.1 Wilson line on a linear path; 5.1.2 Wilson line as an eikonal line; 5.2 Deep inelastic scattering; 5.2.1 Kinematics; 5.2.2 Invitation: the free parton model; 5.2.3 A more formal approach; 5.2.4 Parton distribution functions. 
505 8 |a 5.2.5 Operator definition for PDFs5.2.6 Gauge invariant operator definition; 5.2.7 Collinear factorization and evolution of PDFs; 5.3 Semi-inclusive deep inelastic scattering; 5.3.1 Conventions and kinematics; 5.3.2 Structure functions; 5.3.3 Transverse momentum dependent PDFs; 5.3.4 Gauge-invariant definition for TMDs; A Mathematical vocabulary; A.1 General topology; A.2 Topology and basis; A.3 Continuity; A.4 Connectedness; A.5 Local connectedness and local path-connectedness; A.6 Compactness; A.7 Countability axioms and Baire theorem; A.8 Convergence; A.9 Separation properties. 
505 8 |a A.10 Local compactness and compactificationA. 11 Quotient topology; A.12 Fundamental group; A.13 Manifolds; A.14 Differential calculus; A.15 Stokes' theorem; A.16 Algebra: Rings and modules; A.17 Algebra: Ideals; A.18 Algebras; A.19 Hopf algebra; A.20 Topological, C*-, and Banach algebras; A.21 Nuclear multiplicative convex Hausdorff algebras and the Gel'fand spectrum; B Notations and conventions in quantum field theory; B.1 Vectors and tensors; B.2 Spinors and gamma matrices; B.3 Light-cone coordinates; B.4 Fourier transforms and distributions; B.5 Feynman rules for QCD; C Color algebra. 
520 |a The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. Itteaches how to perform independently with some elementary calculationson Wilson lines, and shows the recent development of the subject in different important areas of research. 
650 0 |a Loops (Group theory) 
650 0 |a Quantum field theory  |x Mathematics. 
650 0 |a Gauge fields (Physics) 
650 7 |a Gauge fields (Physics)  |2 fast  |0 (OCoLC)fst00938995. 
650 7 |a Loops (Group theory)  |2 fast  |0 (OCoLC)fst01002472. 
650 7 |a Quantum field theory  |x Mathematics.  |2 fast  |0 (OCoLC)fst01085108. 
700 1 |a Mertens, Tom. 
700 1 |a Veken, Frederik F. Van der. 
776 0 |c Print  |z 9783110309102. 
830 0 |a De Gruyter studies in mathematical physics. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1663082  |z Full Text (via ProQuest) 
880 8 |6 505-01/(S  |a 2.3.2 Product integral of a matrix function2.3.3 Continuity of matrix functions; 2.3.4 Iterated integrals and path ordering; 2.4 Wilson lines, parallel transport and covariant derivative; 2.4.1 Parallel transport and Wilson lines; 2.4.2 Holonomy, curvature and the Ambrose-Singer theorem; 2.5 Generalization of manifolds and derivatives; 2.5.1 Manifold: Fréchet derivative and Banach manifold; 2.5.2 Fréchet manifold; 3 The group of generalized loops and its Lie algebra; 3.1 Introduction; 3.2 The shuffle algebra over Ω = ∧M as a Hopf algebra; 3.3 The group of loops. 
880 |6 500-00/(S  |a 2.3.2 Product integral of a matrix function2.3.3 Continuity of matrix functions; 2.3.4 Iterated integrals and path ordering; 2.4 Wilson lines, parallel transport and covariant derivative; 2.4.1 Parallel transport and Wilson lines; 2.4.2 Holonomy, curvature and the Ambrose-Singer theorem; 2.5 Generalization of manifolds and derivatives; 2.5.1 Manifold: Fréchet derivative and Banach manifold; 2.5.2 Fréchet manifold; 3 The group of generalized loops and its Lie algebra; 3.1 Introduction; 3.2 The shuffle algebra over Ω = ∧M as a Hopf algebra; 3.3 The group of loops. 
907 |a .b97212271  |b 02-20-23  |c 10-03-17 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g gw   |h 0  |i 2 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i 784a1ca2-f83a-572e-97d0-fcf20ab78ee3  |s 70cc9ebf-ac92-51f5-88ac-f7bf174ea730 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA174.2 .C45 2014  |h Library of Congress classification  |i web  |n 1