On quaternions and octonions : their geometry, arithmetic, and symmetry / John H. Conway [and] Derek A. Smith.

This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Authors: Conway, John H. (John Horton), Smith, Derek Alan, 1970- (Author)
Other title:Their geometry, arithmetic, and symmetry
Format: eBook
Language:English
Published: Natick, Mass. : CRC Press, [2003]
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b9729286
006 m o d
007 cr |||||||||||
008 151017s2003 maua ob 001 0 eng d
005 20240703162630.4
020 |a 9781439864180 
020 |a 1439864187 
029 1 |a DEBBG  |b BV044094423 
035 |a (OCoLC)ebqac922955594 
035 |a (OCoLC)922955594 
037 |a ebqac3059500 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d CRCPR  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCF  |d ICG  |d OCLCQ  |d TYFRS  |d DKC  |d AU@  |d OCLCQ  |d TXI  |d OCLCO  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
049 |a GWRE 
050 4 |a QA196.C66 2003eb 
100 1 |a Conway, John H.  |q (John Horton)  |1 https://id.oclc.org/worldcat/entity/E39PBJj4p9yb39QkgPGr4wMHG3 
245 1 0 |a On quaternions and octonions :  |b their geometry, arithmetic, and symmetry /  |c John H. Conway [and] Derek A. Smith. 
246 3 0 |a Their geometry, arithmetic, and symmetry 
264 1 |a Natick, Mass. :  |b CRC Press,  |c [2003] 
264 4 |c ©2003. 
300 |a 1 online resource (xii, 159 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references (pages 149-152) and index. 
505 0 0 |g I.  |t The complex numbers ;  |t Introduction --  |t Complex numbers and 2-dimensional geometry --  |g II.  |t The quaternions ;  |t Quaternions and 3-dimensional groups --  |t Quaternions and 4-dimensional groups --  |t The Hurwitz integral quaternions --  |g III.  |t The octonions ;  |t The composition algebras --  |t Moufang loops --  |t Octonions and 8-dimensional geometry --  |t The Octavian integers O --  |t Automorphisms and subrings of O --  |t Reading O mod 2 --  |t The octonian projective plane [doublestruck capital]O[italic capital]P². 
520 |a This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization. 
588 0 |a Print version record. 
650 0 |a Quaternions. 
650 0 |a Cayley numbers (Algebra) 
650 7 |a Quaternions  |2 fast 
650 7 |a Cayley numbers (Algebra)  |2 fast 
650 7 |a Algebra  |2 fast 
700 1 |a Smith, Derek Alan,  |d 1970-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjt8RyvmWtFr8gGfYmY4C3 
758 |i has work:  |a On quaternions and octonions (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG463DQgkvD47xgC4wwDdP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Conway, John H. (John Horton)  |t On Quaternions and Octonions.  |d Natick : CRC Press, ©2003  |z 9781568811345 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=3059500  |z Full Text (via ProQuest) 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
994 |a 92  |b COD 
998 |b WorldCat record encoding level change 
999 f f |i 0ad192e5-3bb4-5634-9ea9-7cce6216ea5d  |s 67adde02-0c26-5e85-8c0e-15314f27f83a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA196.C66 2003eb  |h Library of Congress classification  |i web  |n 1