Faithful representations and topographic maps : from distortion-to informationa-based self-organization / Marc M. van Hulle.
Saved in:
Online Access: |
Full Text (via EBSCO) |
---|---|
Main Author: | |
Format: | eBook |
Language: | English |
Published: |
New York, N.Y. :
Wiley,
©2000.
|
Series: | Adaptive and learning systems for signal processing, communications, and control.
|
Subjects: |
Table of Contents:
- 1 Topographic Maps in Sensory Cortices 1
- 1.2 Role of Topographic Maps 2
- 1.3 Topographic Map Development 6
- 1.4 Self-Organization 7
- 2 Topographic Map Models and Algorithms 9
- 2.2 Gradient-based Learning 11
- 2.3 Competitive Learning 13
- 2.3.1 Willshaw and von der Malsburg Model 13
- 2.3.2 Amari Model 15
- 2.3.3 Kohonen's Self-Organizing Map 15
- 2.4 Basic Properties of SOM 20
- 2.4.1 Topographic Ordering 20
- 2.4.2 Weight Convergence, Energy Function 23
- 2.4.3 Role Played by Neighborhood Function 24
- 2.5 Biological Interpretation of SOM 28
- 2.5.1 Formalizing Laterally Connected Networks 28
- 2.5.2 Computational Shortcut 30
- 2.5.3 Physiological Interpretation 31
- 2.6 Extensions of SOM 34
- 2.6.1 Different Matching and Optimization Criteria 34
- 2.6.2 Different Neighborhood Definitions 35
- 2.6.3 Feature Maps 36
- 2.7 Other Types of Topographic Map Algorithms 36
- 2.7.1 Durbin and Willshaw Model 36
- 2.7.2 Van Velzen Model 36
- 2.7.3 Maximum Local Correlation Model 37
- 2.7.4 Information-Preservation Model 38
- 2.7.5 Generative Topographic Map 38
- 3 SOM Data-Modeling Properties and Statistical Applications 41
- 3.2 Vector Quantization and Neighborhood Function 43
- 3.2.2 Quantizer Optimality 44
- 3.2.3 Quantizer Design 48
- 3.2.4 Standard UCL and SOM 49
- 3.2.5 SOM and Phase Transitions 53
- 3.2.6 SOM and Numerical Integration 53
- 3.3 Non-Parametric Regression and Topographic Ordering 56
- 3.3.1 Principal Axes and Principal Curves 56
- 3.3.2 Tangled Lattices and Monitoring 61
- 3.3.3 Effective Dimensionality 67
- 3.3.4 Discrete Input/Output Mapping and Regression 68
- 3.3.5 Continuous Input/Output Mapping 71
- 3.4 Non-Parametric Density Estimation and Magnification Factor 72
- 3.4.1 Magnification Factor 72
- 3.4.2 Density Estimation 74
- 3.4.3 Gray Level Clustering 75
- 4 Equiprobabilistic Topographic Maps 77
- 4.1.1 Avoiding Dead Units 78
- 4.1.2 Equiprobabilistic Map Formation 79
- 4.2 Distortion-based Learning 82
- 4.2.1 Activation Monitoring Rules 82
- 4.2.2 Local Distortion-Monitoring Rules 89
- 4.2.3 Combined Rules 89
- 4.2.5 Constructive Algorithms 93
- 4.2.6 Mean Absolute Error Minimization Rules 94
- 4.3 Information-based Learning 96
- 4.3.1 Mutual Information Maximization 96
- 4.3.2 Redundancy Minimization and Sparse Coding 98
- 4.3.3 Entropy Maximization 100
- 4.4 Maximum Entropy Learning 101
- 4.4.1 Equiprobable Quantization 102
- 4.4.2 Equiprobabilistic Topographic Map Formation 110
- 4.4.3 Distinction from SOM Algorithm 115
- 4.4.4 Maximum Entropy Learning Rule 116
- 4.4.5 Extension with Neighborhood Function 118
- 4.4.6 Lattice-Disentangling Dynamics 118
- 4.5 Biological Interpretation 124
- 4.5.1 Sensory Representation 124
- 4.5.2 Model for Topographic Map Formation 126
- 5 Kernel-based Equiprobabilistic Topographic Maps 129
- 5.1.1 Topographic Subspace Maps 129
- 5.1.2 Topographic Feature Maps 130
- 5.1.3 Outlook 131
- 5.2 Kernel-based Maximum Entropy Learning 132
- 5.2.1 kMER 134
- 5.2.2 Convergence 135
- 5.2.3 Equiprobable Quantization 135
- 5.2.4 Relation with MAE Minimization 135
- 5.2.5 Relation with Fuzzy Clustering 136
- 5.2.6 Relation with Maximum Local Correlation Model 136
- 5.2.7 Relation with Generative Topographic Map 137
- 5.2.8 Optimized Algorithm 138
- 5.2.9 Choice of Parameters 140
- 5.3 Lattice-Disentangling Dynamics 141
- 5.3.1 Monitoring 143
- 5.4 Non-Parametric Density Estimation 149
- 5.4.1 Fixed Kernel Estimate 149
- 5.4.2 Variable Kernel Estimate 150
- 5.4.3 Automatic Choice of Smoothing Parameter 152
- 5.4.4 Simulations 156
- 5.4.5 Alternative Interpretation 158
- 5.5 Density-based Clustering 162
- 5.5.1 Clustering and Competitive Learning 163
- 5.5.2 Density-based Clustering with SKIZ 164
- 5.5.3 Density-based Clustering with Hill-climbing 172
- 5.5.4 Bayesian Classification 178
- 5.6 Blind Source Separation 182
- 5.6.1 Sub-Gaussian BSS 184
- 5.6.2 Super-Gaussian BSS 186
- 5.6.3 Algorithm 187
- 5.6.4 Results 190
- 5.6.5 BSS from Fewer Mixtures 190
- 5.6.6 Distinction from Branch Networks 193
- 5.7 Topographic Feature Maps 193
- 5.7.1 Feature Map kMER 194
- 5.7.2 Speech Encoding Example 196
- 5.7.3 Image Encoding Example 199
- 5.7.4 Comparison with ASSOM 200
- 5.8 Adaptive Subspace Maps 203
- 5.8.1 Adaptive Signal Transformation 204
- 5.8.2 Subspace Method 205
- 5.8.3 Optimally Integrated Adaptive Learning 206
- 5.8.4 Subspace kMER 208
- 5.9 Music Application 216
- 5.9.1 Music Signal Generation 217
- 5.9.2 System Overview 217
- 5.9.3 Detailed Description and Simulations 220
- 5.9.4 System Performance 227.