Introduction to measure and integration / by S.J. Taylor.
This paperback, which comprises the first part of Introduction to Measure and Probability by J.F.C. Kingman and S.J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an i...
Saved in:
Online Access: |
Full Text (via Cambridge) |
---|---|
Main Author: | |
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge [England] :
University Press,
1973.
|
Subjects: |
Summary: | This paperback, which comprises the first part of Introduction to Measure and Probability by J.F.C. Kingman and S.J. Taylor, gives a self-contained treatment of the theory of finite measures in general spaces at the undergraduate level. It sets the material out in a form which not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material to probability theory and also the basic theory of L2-spaces, important in modern physics. A large number of examples is included; these form an essential part of the development. |
---|---|
Physical Description: | 1 online resource (vi, 266 pages) : illustrations |
ISBN: | 9780511662478 0511662475 |
DOI: | 10.1017/CBO9780511662478 |
Source of Description, Etc. Note: | Print version record. |