Lie groups, Lie algebras, cohomology, and some applications in physics / José A. de Azcárraga and José M. Izquierdo.

Now in paperback, this book provides a self-contained introduction to the cohomology theory of Lie groups and algebras and to some of its applications in physics. No previous knowledge of the mathematical theory is assumed beyond some notions of Cartan calculus and differential geometry (which are n...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Azcárraga, J. A. de, 1941-
Other Authors: Izquierdo, José M.
Format: Electronic eBook
Language:English
Published: Cambridge [England] ; New York : Cambridge University Press, 1995.
Series:Cambridge monographs on mathematical physics.
Subjects:

MARC

LEADER 00000cam a2200000Ma 4500
001 in00000034181
006 m o d
007 cr |||||||||||
008 940506s1995 enka ob 001 0 eng d
005 20230831172630.8
035 |a (OCoLC)ceba726827709 
037 |a cebaCBO9780511599897 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d CAMBR  |d OCLCF  |d OL$  |d OCLCQ  |d LLB  |d OCLCQ  |d UAB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 851929232 
020 |a 9780511599897  |q (electronic bk.) 
020 |a 0511599897  |q (electronic bk.) 
020 |z 052146501X  |q (hardback) 
020 |z 9780521465014  |q (hardback) 
020 |z 9780521597005  |q (paperback) 
035 |a (OCoLC)726827709  |z (OCoLC)851929232 
050 4 |a QC20.7.L54  |b A93 1995eb 
049 |a GWRE 
100 1 |a Azcárraga, J. A. de,  |d 1941- 
245 1 0 |a Lie groups, Lie algebras, cohomology, and some applications in physics /  |c José A. de Azcárraga and José M. Izquierdo. 
260 |a Cambridge [England] ;  |a New York :  |b Cambridge University Press,  |c 1995. 
300 |a 1 online resource (xvii, 455 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge monographs on mathematical physics 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a Now in paperback, this book provides a self-contained introduction to the cohomology theory of Lie groups and algebras and to some of its applications in physics. No previous knowledge of the mathematical theory is assumed beyond some notions of Cartan calculus and differential geometry (which are nevertheless reviewed in the book in detail). The examples, of current interest, are intended to clarify certain mathematical aspects and to show their usefulness in physical problems. The topics treated include the differential geometry of Lie groups, fibre bundles and connections, characteristic classes, index theorems, monopoles, instantons, extensions of Lie groups and algebras, some applications in supersymmetry, Chevalley-Eilenberg approach to Lie algebra cohomology, symplectic cohomology, jet-bundle approach to variational principles in mechanics, Wess-Zumino-Witten terms, infinite Lie algebras, the cohomological descent in mechanics and in gauge theories and anomalies. This book will be of interest to graduate students and researchers in theoretical physics and applied mathematics. 
650 0 |a Lie groups. 
650 0 |a Lie algebras. 
650 0 |a Homology theory. 
650 0 |a Mathematical physics. 
650 7 |a Homology theory.  |2 fast  |0 (OCoLC)fst00959720 
650 7 |a Lie algebras.  |2 fast  |0 (OCoLC)fst00998125 
650 7 |a Lie groups.  |2 fast  |0 (OCoLC)fst00998135 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
700 1 |a Izquierdo, José M. 
776 0 8 |i Print version:  |a Azcárraga, J.A. de, 1941-  |t Lie groups, Lie algebras, cohomology, and some applications in physics.  |d Cambridge [England] ; New York : Cambridge University Press, 1995  |w (DLC) 94016809 
830 0 |a Cambridge monographs on mathematical physics. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9780511599897  |z Full Text (via Cambridge) 
915 |a M 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s 643eb59b-6692-4892-9822-4185128adee7  |i 8a98e50c-a26f-4663-bcc9-fd7da2ecf547 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web