Iterative methods in combinatorial optimization / Lap Chi Lau, R. Ravi, Mohit Singh.

"With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence,...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Lau, Lap Chi
Other Authors: Ravi, R. (Ramamoorthi), 1969-, Singh, Mohit
Format: Electronic eBook
Language:English
Published: Cambridge ; New York : Cambridge University Press, ©2011.
Series:Cambridge texts in applied mathematics.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 in00000034362
006 m o d
007 cr |||||||||||
008 110609s2011 enka ob 001 0 eng d
005 20240126125653.0
010 |a  2011003653 
019 |a 818783672  |a 1042895380  |a 1043678619  |a 1066678480  |a 1081296776  |a 1153055578  |a 1167431727  |a 1228554275  |a 1259245601 
020 |a 9781139081078  |q (electronic bk.) 
020 |a 1139081071  |q (electronic bk.) 
020 |a 9781139078801  |q (electronic bk.) 
020 |a 1139078801  |q (electronic bk.) 
020 |a 9780511977152  |q (electronic bk.) 
020 |a 0511977158  |q (electronic bk.) 
020 |a 9781283111164 
020 |a 1283111160 
020 |z 9781107007512  |q (hardback) 
020 |z 1107007518  |q (hardback) 
020 |z 9780521189439  |q (pbk.) 
020 |z 0521189438  |q (pbk.) 
020 |a 1107221773 
020 |a 9781107221772 
020 |a 9786613111166 
020 |a 6613111163 
020 |a 1139076523 
020 |a 9781139076524 
020 |a 1139083341 
020 |a 9781139083348 
020 |a 1139070800 
020 |a 9781139070805 
029 1 |a DEBSZ  |b 372699111 
029 1 |a NZ1  |b 13876595 
035 |a (OCoLC)ceba729716899 
035 |a (OCoLC)729716899  |z (OCoLC)818783672  |z (OCoLC)1042895380  |z (OCoLC)1043678619  |z (OCoLC)1066678480  |z (OCoLC)1081296776  |z (OCoLC)1153055578  |z (OCoLC)1167431727  |z (OCoLC)1228554275  |z (OCoLC)1259245601 
037 |a cebaCBO9780511977152 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d CDX  |d OSU  |d OCLCQ  |d FXR  |d REDDC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d CAMBR  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NJR  |d COO  |d OCLCQ  |d COCUF  |d STF  |d LOA  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d OCLCQ  |d A6Q  |d UHL  |d OCLCQ  |d UKCRE  |d LUN  |d UKAHL  |d OCLCQ  |d OCLCO  |d INTCL  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL  |d OCLCQ 
049 |a GWRE 
050 4 |a QA297.8  |b .L38 2011eb 
084 |a COM000000  |2 bisacsh 
100 1 |a Lau, Lap Chi. 
245 1 0 |a Iterative methods in combinatorial optimization /  |c Lap Chi Lau, R. Ravi, Mohit Singh. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c ©2011. 
300 |a 1 online resource (xi, 242 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Cambridge texts in applied mathematics 
520 |a "With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence, and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids, and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms"--  |c Provided by publisher 
504 |a Includes bibliographical references (pages 233-240) and index. 
505 8 |a Machine generated contents note: 1. Introduction; 2. Preliminaries; 3. Matching and vertex cover in bipartite graphs; 4. Spanning trees; 5. Matroids; 6. Arborescence and rooted connectivity; 7. Submodular flows and applications; 8. Network matrices; 9. Matchings; 10. Network design; 11. Constrained optimization problems; 12. Cut problems; 13. Iterative relaxation: early and recent examples; 14. Summary. 
588 0 |a Print version record. 
546 |a English. 
650 0 |a Iterative methods (Mathematics) 
650 0 |a Combinatorial optimization. 
650 7 |a Combinatorial optimization  |2 fast 
650 7 |a Iterative methods (Mathematics)  |2 fast 
700 1 |a Ravi, R.  |q (Ramamoorthi),  |d 1969-  |1 https://id.oclc.org/worldcat/entity/E39PCjFyQt3XTGdx3mdtWdTGVy 
700 1 |a Singh, Mohit. 
776 0 8 |i Print version:  |a Lau, Lap Chi.  |t Iterative methods in combinatorial optimization.  |d Cambridge ; New York : Cambridge University Press, 2011  |z 9781107007512  |w (DLC) 2011003653  |w (OCoLC)694393831 
830 0 |a Cambridge texts in applied mathematics. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9780511977152  |z Full Text (via Cambridge) 
915 |a - 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
994 |a 92  |b COD 
998 |b WorldCat record encoding level change 
999 f f |s 32840434-1742-433e-ba36-7d877c10879e  |i db431a93-d692-44fb-a3ba-e7390ff77eb8 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA297.8 .L38 2011eb  |h Library of Congress classification  |i web