Modern Approaches to the Invariant-Subspace Problem.

Presents work on the invariant subspace problem, a major unsolved problem in operator theory.

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Chalendar, Isabelle
Other Authors: Partington, Jonathan R.
Format: Electronic eBook
Language:English
Published: Cambridge : Cambridge University Press, 2011.
Series:Cambridge Tracts in Mathematics, 188.
Subjects:

MARC

LEADER 00000cam a2200000Mu 4500
001 in00000035527
006 m o d
007 cr |||||||||||
008 111226s2011 enk ob 001 0 eng d
005 20230831174656.3
035 |a (OCoLC)ceba769341760 
037 |a cebaCBO9780511862434 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d OCLCQ  |d AUD  |d OCLCO  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d YDXCP  |d E7B  |d REDDC  |d N$T  |d CAMBR  |d OCLCQ  |d UAB  |d OCLCQ  |d INT  |d OCLCQ  |d UKAHL  |d LUN  |d OCLCO  |d OCLCQ  |d BRX 
019 |a 761284118  |a 802261800  |a 817920013  |a 1170978889  |a 1171349340  |a 1264821048 
020 |a 9781139117944 
020 |a 1139117947 
020 |a 1139115774  |q (electronic bk.) 
020 |a 9781139115773  |q (electronic bk.) 
020 |a 9781139128605  |q (electronic bk.) 
020 |a 1139128604  |q (electronic bk.) 
020 |a 9780511862434  |q (electronic bk.) 
020 |a 0511862431  |q (electronic bk.) 
020 |z 9781107010512  |q (hardback) 
020 |z 1107010519  |q (hardback) 
029 1 |a AU@  |b 000057022696 
029 1 |a DEBSZ  |b 372705499 
029 1 |a DEBSZ  |b 379323362 
029 1 |a AU@  |b 000069319938 
035 |a (OCoLC)769341760  |z (OCoLC)761284118  |z (OCoLC)802261800  |z (OCoLC)817920013  |z (OCoLC)1170978889  |z (OCoLC)1171349340  |z (OCoLC)1264821048 
050 4 |a QA322.4 .C46 2011 
049 |a GWRE 
100 1 |a Chalendar, Isabelle. 
245 1 0 |a Modern Approaches to the Invariant-Subspace Problem. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (299 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge Tracts in Mathematics, 188 ;  |v v. 188 
505 0 |a Cover; Half-title; Title; Copyright; Contents; Preface; 1 Background; 1.1 Functional analysis; 1.1.1 Weak topology; 1.1.2 Hahn-Banach theorem; 1.1.3 Stone-Weierstrass theorem; 1.1.4 Banach-Steinhaus theorem; 1.1.5 Complex measures; 1.1.6 Riesz representation theorem; 1.1.7 Geometry of Banach spaces; 1.2 Operator theory; 1.2.1 Basic definitions and spectral properties; 1.2.2 Wold decomposition of an isometry; 1.2.3 Riesz -- Dunford functional calculus; 1.3 The Poisson kernel; 1.4 Hardy spaces; 1.4.1 Inner and outer functions; 1.4.2 Consequences of the inner -- outer factorization. 
505 8 |a 1.4.3 The theorems of Beurling and Wiener1.4.4 The disc algebra; 1.4.5 Reproducing kernels, Riesz bases and Carleson sequences; 1.4.6 Functions of bounded mean oscillation; 1.4.7 The Hilbert transform on the unit circle; 1.5 Number Theory; 2 The operator-valued Poisson kernel and its applications; 2.1 The operator-valued Poisson kernel; 2.2 The H8 functional calculus for absolutely continuous?-contractions; 2.3 H8 functional calculus in a complex Banach space; 2.4 Absolutely continuous elementary spectral measures; Exercises; Comments. 
505 8 |a 3 Properties (An, m) and factorization of integrable functions3.1 The basis of the S. Brown method; 3.1.1 The starting point; 3.1.2 The class A; 3.1.3 Classes An, m; 3.2 Factorization of log-integrable functions; 3.3 Applications in harmonic analysis; 3.4 Subnormal operators; 3.4.1 Borelian functional calculus for normal operators; 3.4.2 Invariant subspaces for subnormal operators; 3.5 Surjectivity of continuous bilinear mapping; 3.5.1 A sufficient condition for property (A?0); 3.5.2 A sufficient condition for property (A1,?0); Exercises; Comments. 
505 8 |a 4 Polynomially bounded operators with rich spectrum4.1 Apostol's theorem; 4.2 C2(T) functional calculus and the Colojoara-Foias theorem; 4.2.1 Operators with a C2(T) functional calculus; 4.2.2 The Colojoara-Foias theorem; 4.3 Zenger's theorem; 4.3.1 Zenger's theorem and a factorization result; 4.3.2 A stronger version of Zenger's theorem; 4.4 Carleson's interpolation theorem; 4.5 Approximation using Apostol sets; 4.5.1 Approximation of integrable non-negative functions; 4.5.2 Approximate eigenvalues; 4.6 Invariant subspace results; Exercises; Comments; 5 Beurling algebras. 
505 8 |a 5.1 Properties of Beurling algebras5.2 Theorems of Wermer and Atzmon; 5.3 Bishop operators; 5.3.1 Davie's functional calculus; 5.3.2 The point spectrum; 5.4 Rational Bishop operators; 5.4.1 Cyclic vectors; 5.4.2 The lattice of invariant subspaces; Exercises; Comments; 6 Applications of a fixed-point theorem; 6.1 Operators commuting with compact operators; 6.2 Essentially self-adjoint operators; 6.2.1 Preliminaries; 6.2.2 Application to invariant subspaces; Exercises; Comments; 7 Minimal vectors; 7.1 The basic definitions; 7.2 Minimal vectors in Hilbert space; 7.3 A general extremal problem. 
500 |a 7.3.1 Approximation in Hilbert spaces. 
520 |a Presents work on the invariant subspace problem, a major unsolved problem in operator theory. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
650 0 |a Invariant subspaces. 
650 0 |a Hilbert space. 
650 7 |a Hilbert space.  |2 fast  |0 (OCoLC)fst00956785 
650 7 |a Invariant subspaces.  |2 fast  |0 (OCoLC)fst00977981 
700 1 |a Partington, Jonathan R. 
776 0 8 |i Print version:  |a Chalendar, Isabelle.  |t Modern Approaches to the Invariant-Subspace Problem.  |d Cambridge : Cambridge University Press, ©2011  |z 9781107010512 
830 0 |a Cambridge Tracts in Mathematics, 188. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9780511862434  |z Full Text (via Cambridge) 
915 |a M 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s 8b28630a-ed6c-42d3-96b2-7973d733ea93  |i 21920580-4ed0-41c8-b435-98fadc5ce3ef 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web