P-Automorphisms of Finite p-Groups / Evgenii I. Khukhro.
Ideal for graduate students and researchers working in group theory and Lie rings.
Saved in:
Online Access: |
Full Text (via Cambridge) |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge :
Cambridge University Press,
1998.
|
Series: | London Mathematical Society lecture note series ;
no. 246. |
Subjects: |
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | in00000038862 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 090406s1998 enk o 001 0 eng d | ||
005 | 20230831174942.8 | ||
035 | |a (OCoLC)ceba776974327 | ||
037 | |a cebaCBO9780511526008 | ||
040 | |a UkCbUP |b eng |e pn |c AUD |d OCLCO |d OCLCQ |d MHW |d EBLCP |d OCLCF |d DEBSZ |d OCLCQ |d YDXCP |d OCLCQ |d AU@ |d OL$ |d OCLCQ |d OCLCO |d OCLCQ | ||
020 | |a 9780511526008 |q (ebook) | ||
020 | |a 0511526008 |q (ebook) | ||
020 | |a 9780521597173 |q (paperback) | ||
020 | |a 052159717X |q (paperback) | ||
020 | |a 9781107367517 | ||
020 | |a 1107367514 | ||
029 | 1 | |a AU@ |b 000062616675 | |
029 | 1 | |a DEBSZ |b 382135423 | |
035 | |a (OCoLC)776974327 | ||
050 | 4 | |a QA174.2 .K58 1998 | |
049 | |a GWRE | ||
100 | 1 | |a Khukhro, Evgenii I. | |
245 | 1 | 0 | |a P-Automorphisms of Finite p-Groups / |c Evgenii I. Khukhro. |
260 | |a Cambridge : |b Cambridge University Press, |c 1998. | ||
300 | |a 1 online resource (224 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society Lecture Note Series ; |v no. 246 | |
500 | |a Title from publishers bibliographic system (viewed 22 Dec 2011). | ||
520 | |a Ideal for graduate students and researchers working in group theory and Lie rings. | ||
505 | 0 | |a Cover -- Title -- Copyright -- Contents -- Preface -- Introduction -- Chapter 1. Preliminaries -- 1.1. Groups -- 1.2. Rings and modules -- 1.3. Algebraic systems, varieties and free objects -- Exercises 1 -- Chapter 2. Automorphisms and their fixed points -- 2.1. Semidirect products -- 2.2. Automorphisms as linear transformations -- 2.3. Induced automorphisms of factor- groups -- Exercises 2 -- Chapter 3. Nilpotent and soluble groups -- 3.1. The lower central series -- 3.2. Nilpotent groups -- 3.3. Soluble groups and varieties. | |
505 | 8 | |a 3.4. Nilpotency criteria for soluble groups -- Exercises 3 -- Chapter 4. Finite p-groups -- 4.1. Basic properties -- 4.2. A theorem of P. Hall -- Exercises 4 -- Chapter 5. Lie rings -- 5.1. Definitions and basic properties -- 5.2. Nilpotent and soluble Lie rings -- 5.3. Free Lie rings -- Exercises 5 -- Chapter 6. Associated Lie rings -- 6.1. Definition -- 6.2. Basic properties -- 6.3. Some applications -- Exercises 6 -- Chapter 7. Regular automorphisms of Lie rings -- 7.1. Graded Lie rings -- 7.2. Combinatorial consequences -- 7.3. Regular automorphisms -- Exercises 7. | |
505 | 8 | |a Chapter 8. Almost regular automorphism of order p:almost nilpotency of p-bounded class -- Exercises 8 -- Chapter 9. The Baker-Hausdorff Formula and nilpotent Q-powered groups -- 9.1. Free nilpotent groups -- 9.2. The Baker-Hausdorff Formula -- 9.3. Nilpotent Q-powered groups -- Exercises 9 -- Chapter 10. The correspondences of A.I. Mal'cev and M. Lazard -- 10.1. The Mal'cev Correspondence -- 10.2. The Lazard Correspondence -- Exercises 10 -- Chapter 11. Powerful p-groups -- 11.1. Definitions and basic properties -- 11.2. Finite p-groups of bounded rank -- Exercises 11. | |
505 | 8 | |a Chapter 12. Almost regular automorphism of order pn:almost solubility of pn-bounded derived length -- 12.1. Uniformly powerful case -- 12.2. Application of the Mal'cev Correspondence -- 12.3. Almost solubility of pn-bounded derived length -- Exercises 12 -- Chapter 13. p-Automorphisms with p fixed points -- 13.1. Abelian p-groups -- 13.2. Reduction to Lie rings -- 13.3. The Lie ring theorem -- Exercises 13 -- Chapter 14. Automorphism of order p with pm fixed points: almost nilpotency of m-bounded class -- 14.1. Almost solubility of m-bounded derived length. | |
505 | 8 | |a 14.2. Almost nilpotency of m-bounded class -- Exercises 14 -- Bibliography -- Index of names -- Subject Index -- List of symbols. | |
650 | 0 | |a Automorphisms. | |
650 | 0 | |a Finite groups. | |
650 | 7 | |a Automorphisms. |2 fast |0 (OCoLC)fst00824131 | |
650 | 7 | |a Finite groups. |2 fast |0 (OCoLC)fst00924908 | |
776 | 0 | 8 | |i Print version: |z 9780521597173 |
830 | 0 | |a London Mathematical Society lecture note series ; |v no. 246. | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9780511526008 |z Full Text (via Cambridge) |
915 | |a M | ||
956 | |a Cambridge EBA | ||
956 | |b Cambridge EBA ebooks Complete Collection | ||
998 | |b New collection CUP.ebaebookscomplete | ||
994 | |a 92 |b COD | ||
999 | f | f | |s beec4fb0-1bad-4c50-8a41-19364787d165 |i 2313866d-f44b-4862-879a-a245de9b428b |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |h Library of Congress classification |i web |