Local fields / J.W.S. Cassels.

The p-adic numbers, the earliest of local fields, were introduced by Hensel some 70 years ago as a natural tool in algebra number theory. Today the use of this and other local fields pervades much of mathematics, yet these simple and natural concepts, which often provide remarkably easy solutions to...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Cassels, J. W. S. (John William Scott)
Format: Electronic eBook
Language:English
Published: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986.
Series:London Mathematical Society student texts ; 3.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 in00000042241
006 m o d
007 cr |||||||||||
008 121114s1986 enka ob 001 0 eng d
005 20230831175159.8
035 |a (OCoLC)ceba817968639 
037 |a cebaCBO9781139171885 
040 |a CAMBR  |b eng  |e pn  |c CAMBR  |d IDEBK  |d N$T  |d E7B  |d OCLCF  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d OCLCQ  |d HEBIS  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d REC  |d OCLCO  |d STF  |d AU@  |d OCLCO  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AJS  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 852899038  |a 853360373  |a 977472739  |a 985210429  |a 985385300  |a 990745037  |a 1001697694  |a 1003384802  |a 1108951809 
020 |a 9781139171885  |q (electronic bk.) 
020 |a 1139171887  |q (electronic bk.) 
020 |a 9781107087644  |q (electronic bk.) 
020 |a 1107087643  |q (electronic bk.) 
020 |a 9781107093850 
020 |a 1107093856 
020 |z 0521304849 
020 |z 9780521304849 
020 |z 0521315255 
020 |z 9780521315258 
029 1 |a DEBBG  |b BV043057025 
029 1 |a DEBSZ  |b 391498762 
029 1 |a DEBSZ  |b 446444987 
035 |a (OCoLC)817968639  |z (OCoLC)852899038  |z (OCoLC)853360373  |z (OCoLC)977472739  |z (OCoLC)985210429  |z (OCoLC)985385300  |z (OCoLC)990745037  |z (OCoLC)1001697694  |z (OCoLC)1003384802  |z (OCoLC)1108951809 
050 4 |a QA247  |b .C34 1986eb 
084 |a 31.14  |2 bcl 
084 |a 31.51  |2 bcl 
084 |a SK 230  |2 rvk 
084 |a MAT 123f  |2 stub 
049 |a GWRE 
100 1 |a Cassels, J. W. S.  |q (John William Scott) 
245 1 0 |a Local fields /  |c J.W.S. Cassels. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1986. 
300 |a 1 online resource (xiv, 360 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 3 
504 |a Includes bibliographical references (pages 352-357) and index. 
588 0 |a Print version record. 
520 |a The p-adic numbers, the earliest of local fields, were introduced by Hensel some 70 years ago as a natural tool in algebra number theory. Today the use of this and other local fields pervades much of mathematics, yet these simple and natural concepts, which often provide remarkably easy solutions to complex problems, are not as familiar as they should be. This book, based on postgraduate lectures at Cambridge, is meant to rectify this situation by providing a fairly elementary and self-contained introduction to local fields. After a general introduction, attention centres on the p-adic numbers and their use in number theory. There follow chapters on algebraic number theory, diophantine equations and on the analysis of a p-adic variable. This book will appeal to undergraduates, and even amateurs, interested in number theory, as well as to graduate students. 
505 0 |a Cover; Series Page; Title; Copyright; PREFACE; CONTENTS; LEITFADEN; NOTATIONAL CONVENTIONS; CHAPTER ONE: INTRODUCTION; 1 VALUATIONS; 2 REMARKS; 3 AN APPLICATION; CHAPTER TWO: GENERAL PROPERTIES; 1 DEFINITIONS AND BASICS; 2 VALUATIONS ON THE RATIONALS; 3 INDEPENDENCE OF VALUATIONS; 4 COMPLETENESS; 5 FORMAL SERIES AND A THEOREM OF EISENSTEIN; CHAPTER THREE: ARCHIMEDEAN VALUATIONS; 1 INTRODUCTION; 2 SOME LEMMAS; 3 COMPLETION OF PROOF; CHAPTER FOUR: NON-ARCHIMEDEAN VALUATIONS. SIMPLE PROPERTIES; 1 DEFINITIONS AND BASICS; 2 AN APPLICATION TO FINITE GROUPS OF RATIONAL MATRICES; 3 HENSEL'S LEMMA 
505 8 |a 4 ELEMENTARY ANALYSIS5 A USEFUL EXPANSION; 6 AN APPLICATION TO RECURRENT SEQUENCES; CHAPTER FIVE: EMBEDDING THEOREM; 1 INTRODUCTION; 2 THREE LEMMAS; 3 PROOF OF THEOREM; 4 APPLICATION. A THEOREM OF SELBERG; 5 APPLICATION. THE THEOREM OF MAHLER AND LECH; CHAPTER SIX: TRANSCENDENTAL EXTENSIONS. FACTORIZATION; 1 INTRODUCTION; 2 GAUSS' LEMMA AND EISENSTEIN IRREDUCIBILITY; 3 NEWTON POLYGON; 4 FACTORIZATION OF PURE POLYNOMIALS; 5 WEIERSTRASS PREPARATION THEOREM; CHAPTER SEVEN: ALGEBRAIC EXTENSIONS (COMPLETE FIELDS); 1 INTRODUCTION; 2 UNIQUENESS; 3 EXISTENCE; 4 RESIDUE CLASS FIELDS; 5 RAMIFICATION 
505 8 |a 6 DISCRIMINANTS7 COMPLETELY RAMIFIED EXTENSIONS; 8 ACTION OF GALOIS; CHAPTER EIGHT: P-ADIC FIELDS; 1 INTRODUCTION; 2 UNRAMIFIED EXTENSIONS; 3 NON-COMPLETENESS OF Qp; 4 ""KRONECKER-WEBER"" THEOREM; CHAPTER NINE: ALGEBRAIC EXTENSIONS (INCOMPLETE FIELDS); 1 INTRODUCTION; 2 PROOF OF THEOREM AND COROLLARIES; 3 INTEGERS AND DISCRIMINANTS; 4 APPLICATION TO CYCLOTOMIC FIELDS; 5 ACTION OF GALOIS; 6 APPLICATION. QUADRATIC RECIPROCITY; CHAPTER TEN: ALGEBRAIC NUMBER FIELDS; 1 INTRODUCTION; 2 PRODUCT FORMULA; 3 ALGEBRAIC INTEGERS; 4 STRONG APPROXIMATION THEOREM; 5 DIVISORS. RELATION TO IDEAL THEORY 
505 8 |a 6 EXISTENCE THEOREMS7 FINITENESS OF THE CLASS NUMBER; 8 THE UNIT GROUP; 9 APPLICATION TO DIOPHANTINE EQUATIONS. RATIONAL SOLUTIONS; 10 APPLICATION TO DIOPHANTINE EQUATIONS. INTEGRAL SOLUTIONS; 11 THE DISCRIMINANT; 12 THE KRONECKER-WEBER THEOREM; 13 STATISTICS OF PRIME DECOMPOSITION; CHAPTER ELEVEN: DIOPHANTINE EQUATIONS; I INTRODUCTION; 2 HASSE PRINCIPLE FOR TERNARY QUADRATICS; 3 CURVES OF GENUS 1. GENERALITIES; 4 CURVES OF GENUS 1. A SPECIAL CASE; CHAPTER TWELVE: ADVANCED ANALYSIS; 1 INTRODUCTION; 2 ELEMENTARY FUNCTIONS; 3 ANALYTIC CONTINUATION; 4 MEASURE ON Zp; 5 THE ZETA FUNCTION 
505 8 |a 6 L-FUNCTIONS7 MAHLER'S EXPANSION; CHAPTER THIRTEEN: A THEOREM OF BOREL AND DWORK; 1 INTRODUCTION; 2 SOME LEMMAS; 3 PROOF; APPENDIX A: RESULTANTS AND DISCRIMINANTS; APPENDIX B: NORMS, TRACES AND CHARACTERISTIC POLYNOMIALS; APPENDIX C: MINKOWSKI'S CONVEX BODY THEOREM; APPENDIX D: SOLUTION OF EQUATIONS IN FINITE FIELDS; APPENDIX E: ZETA AND L-FUNCTIONS AT NEGATIVE INTEGERS; APPENDIX F: CALCULATION OF EXPONENTIALS; REFERENCES; INDEX 
650 0 |a Local fields (Algebra) 
650 7 |a Local fields (Algebra)  |2 fast  |0 (OCoLC)fst01001252 
776 0 8 |i Print version:  |a Cassels, J.W.S. (John William Scott).  |t Local fields.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986  |z 0521304849  |w (DLC) 85047934  |w (OCoLC)12262799 
830 0 |a London Mathematical Society student texts ;  |v 3. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9781139171885  |z Full Text (via Cambridge) 
915 |a - 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s b3c4fac9-758a-4fcf-833f-e7b4353d2e87  |i 3fa47d62-d3ef-4caf-801f-505ac4bc857a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web