Lattice coding for signals and networks : a structured coding approach to quantization, modulation, and multi-user information theory / Ram Zamir, Tel Aviv University.

"Unifying information theory and digital communication through the language of lattice codes, this book provides a detailed overview for students, researchers and industry practitioners. It covers classical work by leading researchers in the field of lattice codes and complementary work on dith...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Zamir, Ram
Format: Electronic eBook
Language:English
Published: Cambridge : Cambridge University Press, 2014.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000047466
006 m o d
007 cr |||||||||||
008 140804s2014 enk ob 001 0 eng d
005 20230831180050.1
035 |a (OCoLC)ceba885208541 
037 |a cebaCBO9781139045520 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d CAMBR  |d EBLCP  |d YDXCP  |d E7B  |d IDEBK  |d COO  |d OCLCQ  |d UMI  |d DEBBG  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d YDX  |d NRC  |d UAB  |d OCLCQ  |d BUF  |d CEF  |d OCLCQ  |d WYU  |d UKAHL  |d OCLCQ  |d ITD  |d OCLCQ  |d LUN  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ 
019 |a 885122153  |a 892969572  |a 965469672  |a 965727181  |a 1066452726  |a 1168039402 
020 |a 9781316003145  |q (electronic bk.) 
020 |a 1316003140  |q (electronic bk.) 
020 |a 9781139045520  |q (electronic bk.) 
020 |a 1139045520  |q (electronic bk.) 
020 |a 9781316007648 
020 |a 1316007642 
020 |a 9781322066448  |q (MyiLibrary) 
020 |a 1322066442  |q (MyiLibrary) 
020 |a 9781316005408  |q (e-book) 
020 |a 1316005402  |q (e-book) 
020 |z 9780521766982 
020 |z 0521766982 
029 1 |a DEBBG  |b BV042182798 
029 1 |a DEBBG  |b BV043609071 
029 1 |a DEBSZ  |b 417234864 
029 1 |a DEBSZ  |b 431681287 
029 1 |a GBVCP  |b 793080533 
029 1 |a GBVCP  |b 814607462 
029 1 |a NLGGC  |b 380190281 
029 1 |a NZ1  |b 15910415 
035 |a (OCoLC)885208541  |z (OCoLC)885122153  |z (OCoLC)892969572  |z (OCoLC)965469672  |z (OCoLC)965727181  |z (OCoLC)1066452726  |z (OCoLC)1168039402 
050 4 |a TK5102.92  |b .Z357 2014eb 
049 |a GWRE 
100 1 |a Zamir, Ram. 
245 1 0 |a Lattice coding for signals and networks :  |b a structured coding approach to quantization, modulation, and multi-user information theory /  |c Ram Zamir, Tel Aviv University. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "Unifying information theory and digital communication through the language of lattice codes, this book provides a detailed overview for students, researchers and industry practitioners. It covers classical work by leading researchers in the field of lattice codes and complementary work on dithered quantization and infinite constellations, and then introduces the more recent results on 'algebraic binning' for side-information problems, and linear/lattice codes for networks. It shows how high dimensional lattice codes can close the gap to the optimal information theoretic solution, including the characterisation of error exponents. The solutions presented are based on lattice codes, and are therefore close to practical implementations, with many advanced setups and techniques, such as shaping, entropy-coding, side-information and multi-terminal systems. Moreover, some of the network setups shown demonstrate how lattice codes are potentially more efficient than traditional random-coding solutions, for instance when generalising the framework to Gaussian networks"--  |c Provided by publisher 
520 |a "Unifying information theory and digital communication through the language of lattice codes, this book provides a detailed overview for students, researchers and industry practitioners. It covers classical work by leading researchers in the field of lattice codes and complementary work on dithered quantization and infinite constellations, and then introduces themore recent results on "algebraic binning" for side-information problems, and linear/lattice codes for networks. It shows how high-dimensional lattice codes can close the gap to the optimal information theoretic solution, including the characterization of error exponents"--  |c Provided by publisher 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Cover; Half title; Title; Copyright; Dedication; Contents; Preface; Acknowledgements; List of notation; 1 Introduction; 1.1 Source and channel coding; 1.2 The information theoretic view; 1.3 Structured codes; 1.4 Preview; 2 Lattices; 2.1 Representation; 2.2 Partition; 2.3 Equivalent cells and coset leaders; 2.4 Transformation and tiling; 2.5 Algebraic constructions; Summary; Problems; Interesting facts about lattices; 3 Figures of merit; 3.1 Sphere packing and covering; 3.2 Quantization: normalized second moment; 3.3 Modulation: volume to noise ratio; Summary; Problems; Historical notes. 
505 8 |a 4 Dithering and estimation4.1 Crypto lemma; 4.2 Generalized dither; 4.3 White dither spectrum; 4.4 Wiener estimation; 4.5 Filtered dithered quantization; Summary; Problems; Historical notes; 5 Entropy-coded quantization; 5.1 The Shannon entropy; 5.2 Quantizer entropy; 5.3 Joint and sequential entropy coding*; 5.4 Entropy-distortion trade-off; 5.5 Redundancy over Shannon; 5.6 Optimum test-channel simulation; 5.7 Comparison with Lloyd's conditions; 5.8 Is random dither really necessary?; 5.9 Universal quantization*; Summary; Problems; Historical notes. 
505 8 |a 6 Infinite constellation for modulation6.1 Rate per unit volume; 6.2 ML decoding and error probability; 6.3 Gap to capacity; 6.4 Non-AWGN and mismatch; 6.5 Non-equiprobable signaling; 6.6 Maximum a posteriori decoding*; Summary; Problems; Historical notes; 7 Asymptotic goodness; 7.1 Sphere bounds; 7.2 Sphere-Gaussian equivalence; 7.3 Good covering and quantization; 7.4 Does packing imply modulation?; 7.5 The Minkowski-Hlawka theorem; 7.6 Good packing; 7.7 Good modulation; 7.8 Non-AWGN; 7.9 Simultaneous goodness; Summary; Problems; Historical notes; 8 Nested lattices. 
505 8 |a 8.1 Definition and properties8.2 Cosets and Voronoi codebooks; 8.3 Nested linear, lattice and trellis codes; 8.4 Dithered codebook; 8.5 Good nested lattices; Summary; Problems; Historical notes; 9 Lattice shaping; 9.1 Voronoi modulation; 9.2 Syndrome dilution scheme; 9.3 The high SNR case; 9.4 Shannon meets Wiener (at medium SNR); 9.5 The mod channel; 9.6 Achieving C[sub(AWGN)] for all SNR; 9.7 Geometric interpretation; 9.8 Noise-matched decoding; 9.9 Is the dither really necessary?; 9.10 Voronoi quantization; Summary; Problems; Historical notes; 10 Side-information problems. 
505 8 |a 10.1 Syndrome coding10.2 Gaussian multi-terminal problems; 10.3 Rate distortion with side information; 10.4 Lattice Wyner-Ziv coding; 10.5 Channels with side information; 10.6 Lattice dirty-paper coding; Summary; Problems; Historical notes; 11 Modulo-lattice modulation; 11.1 Separation versus JSCC; 11.2 Figures of merit for JSCC; 11.3 Joint Wyner-Ziv/dirty-paper coding; 11.4 Bandwidth conversion; Summary; Problems; Historical notes; 12 Gaussian networks; 12.1 The two-help-one problem; 12.2 Dirty multiple-access channel; 12.3 Lattice network coding; 12.4 Interference alignment. 
650 0 |a Coding theory. 
650 0 |a Signal processing  |x Mathematics. 
650 0 |a Lattice theory. 
650 7 |a Coding theory.  |2 fast  |0 (OCoLC)fst00866237 
650 7 |a Lattice theory.  |2 fast  |0 (OCoLC)fst00993426 
650 7 |a Signal processing  |x Mathematics.  |2 fast  |0 (OCoLC)fst01118302 
776 0 8 |i Print version:  |a Zamir, Ram.  |t Lattice coding for signals and networks  |z 9780521766982  |w (DLC) 2014006008  |w (OCoLC)873723592 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9781139045520  |z Full Text (via Cambridge) 
915 |a - 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s bd935bfc-fd79-46ea-a960-1ccdf40a86fa  |i db8ed7e3-478f-41d0-9116-47e99a596525 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web