Riemann surfaces and algebraic curves : a first course in Hurwitz theory / Renzo Cavalieri, Colorado State University ; Eric Miles, Colorado Mesa University.

"Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Authors: Cavalieri, Renzo, 1976- (Author), Miles, Eric (Eric W.) (Author)
Format: Electronic eBook
Language:English
Published: New York, NY : Cambridge University Press, 2016.
Series:London Mathematical Society student texts ; 87.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000056517
006 m o d
007 cr |||||||||||
008 170110t20162016nyua ob 001 0 eng d
005 20230831180936.5
035 |a (OCoLC)ceba963353353 
037 |a cebaCBO9781316569252 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OSU  |d OCLCO  |d OTZ  |d UIU  |d U3W  |d COO  |d LEAUB  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ 
019 |a 962437381 
020 |a 9781316569252  |q (electronic bk.) 
020 |a 131656925X  |q (electronic bk.) 
020 |z 9781107149243  |q (hardcover) 
020 |z 110714924X  |q (hardcover) 
020 |z 9781316603529  |q (paperback) 
020 |z 1316603520  |q (paperback) 
035 |a (OCoLC)963353353  |z (OCoLC)962437381 
050 4 |a QA333  |b .C38 2016 
049 |a GWRE 
100 1 |a Cavalieri, Renzo,  |d 1976-  |e author. 
245 1 0 |a Riemann surfaces and algebraic curves :  |b a first course in Hurwitz theory /  |c Renzo Cavalieri, Colorado State University ; Eric Miles, Colorado Mesa University. 
264 1 |a New York, NY :  |b Cambridge University Press,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (xii, 183 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 87 
546 |a Text in English. 
520 |a "Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes. A self-contained reference on Hurwitz theory which brings together material dispersed across the literature. Demonstrates connections between complex analysis, algebra, geometry, topology, representation theory and physics. Provides everything a geometer needs to offer a course on Hurwitz theory"--Publisher's website 
504 |a Includes bibliographical references and index. 
505 0 |a From complex analysis to Riemann surfaces -- Introduction to manifolds -- Riemann surfaces -- Maps of Riemann surfaces -- Loops and lifts -- Counting maps -- Counting monodromy representations -- Representation theory of Sd -- Hurwitz numbers and Z(Sd) -- The Hurwitz potential. 
588 0 |a Print version record. 
650 0 |a Riemann surfaces. 
650 0 |a Curves, Algebraic. 
650 0 |a Geometry, Algebraic. 
650 7 |a Curves, Algebraic.  |2 fast  |0 (OCoLC)fst00885451 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
650 7 |a Riemann surfaces.  |2 fast  |0 (OCoLC)fst01097801 
700 1 |a Miles, Eric  |q (Eric W.),  |e author. 
776 0 8 |i Print version:  |a Cavalieri, Renzo, 1976-  |t Riemann Surfaces and Algebraic Curves.  |d New York, NY : Cambridge University Press, 2016  |z 9781107149243  |w (DLC) 2016025911  |w (OCoLC)951557351 
830 0 |a London Mathematical Society student texts ;  |v 87. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9781316569252  |z Full Text (via Cambridge) 
915 |a - 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s 96a6ec59-5364-4cda-ae9d-1094fb436929  |i ecdda296-0820-488b-b82e-d29c356660dc 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web