Degrees of Unsolvability : Local and Global Theory.

This volume presents a systematic study of the interaction between local and global degree theory.

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Lerman, Manuel
Format: Electronic eBook
Language:English
Published: Cambridge : Cambridge University Press, 2017.
Series:Perspectives in logic.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 in00000057374
006 m o d
007 cr |||||||||||
008 170422s2017 enk o 000 0 eng d
005 20230831181012.2
035 |a (OCoLC)ceba982451350 
037 |a ceba9781316717059 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d IDEBK  |d YDX  |d UIU  |d UAB  |d CHVBK  |d OCLCF  |d OTZ  |d MERER  |d OCLCQ  |d DEBBG  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 982351173  |a 982403573  |a 982420257  |a 982511896  |a 983471420  |a 989715902  |a 993756557 
020 |a 9781316749005 
020 |a 1316749002 
020 |a 1316752860 
020 |a 9781316752869 
020 |a 9781316717059 
020 |a 1316717054 
020 |z 1316754790 
020 |z 1107168139 
020 |z 9781107168138 
029 1 |a CHNEW  |b 000953020 
035 |a (OCoLC)982451350  |z (OCoLC)982351173  |z (OCoLC)982403573  |z (OCoLC)982420257  |z (OCoLC)982511896  |z (OCoLC)983471420  |z (OCoLC)989715902  |z (OCoLC)993756557 
050 4 |a QA9.63  |b .L476 2016 
049 |a GWRE 
100 1 |a Lerman, Manuel. 
245 1 0 |a Degrees of Unsolvability :  |b Local and Global Theory. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2017. 
300 |a 1 online resource (323 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Perspectives in logic ;  |v v. 11 
588 0 |a Print version record. 
505 0 |a Cover ; Half-title ; Series information ; Title page ; Copyright information ; Dedication ; Preface to the Series ; Author's Preface ; Table of Contents ; Introduction; Part A The Structure of the Degrees; Chapter I Recursive Functions; 1. The Recursive and Partial Recursive Functions; 2. Relative Recursion; 3. The Enumeration and Recursion Theorems; Chapter II Embeddings and Extensions of Embeddings in the Degrees; 1. Upper semilattice Structure for the Degrees; 2. Incomparable Degrees; 3. Embeddings into the Degrees; 4. Extensions of Embeddings into the Degrees. 
505 8 |a Chapter III The Jump Operator1. The Arithmetical Hierarchy; 2. The Jump Operator; 3. Embeddings and Exact Pairs Below 0'; 4. Jump Inversion; 5. Maximal Antichains and Maximal Independent Sets Below 0'; 6. Maximal Chains Below 0'; 7. Classes of Degrees Determined by the Jump Operation; 8. More Exact Pairs; Chapter IV High/Low Hierarchies; 1. High/Low Hierarchies ; 2. GL[sub(1)] and 1-Generic Degrees; 3. GL[sub(2)] and Its Complement; 4. GH[sub(1)] ; 5. Automorphism Bases; Part B Countable Ideals of Degrees; Chapter V Minimal Degrees; 1. Binary Trees; 2. Minimal Degrees. 
505 8 |a 3. Double Jumps of Minimal Degrees4. Minimal Covers and Minimal Upper Bounds; 5. Cones of Minimal Covers; Chapter VI Finite Distributive Lattices; 1. Usl Representations; 2. Uniform Trees; 3. Splitting Trees; 4. Initial Segments of D ; 5. An Automorphism Base for D ; Chapter VII Finite Lattices; 1. Weakly Homogeneous Sequential Lattice Tables; 2. Uniform Trees; 3. Splitting Trees; 4. Finite Ideals of D; 5. An Automorphism Base for D ; Chapter VIII Countable Usls; 1. Countable Ideals of D ; 2. Jump Preserving Isomorphisms; 3. The Degree of Th(D) ; 4. Elementary Equivalence over D' 
505 8 |a 5. Isomorphisms Between Cones of DegreesPart C Initial Segments of D and the Jump Operator; Chapter IX Minimal Degrees and High/Low Hierarchies; 1. Partial Recursive Trees; 2. Minimal Degrees Below 0'; 3. Minimal Degrees Below Degrees in GH[sub(1)] ; Chapter X Jumps of Minimal Degrees; 1. Targets; 2. Jumps of Minimal Degrees; Chapter XI Bounding Minimal Degrees with Recursively Enumerable Degrees; 1. Trees Permitted by Recursively Enumerable Sets; 2. Minimal Degrees and Recursively Enumerable Permitting; Chapter XII Initial Segments of D[0,0'] ; 1. Weakly Uniform Trees. 
505 8 |a 2. Subtree Constructions3. Splitting Trees; 4. The Construction; 5. Generalizations and Applications; Appendix A Coding into Structures and Theories; 1. Degrees of Presentations of Lattices; 2. Interpreting Theories within Other Theories; 3. Second Order Arithmetic; Appendix B Lattice Tables and Representation Theorems; 1. Finite Distributive Lattices; 2. Finite Lattices; 3. Countable Uppersemilattices; References; Notation Index; Subject Index. 
520 |a This volume presents a systematic study of the interaction between local and global degree theory. 
650 0 |a Unsolvability (Mathematical logic) 
650 7 |a Unsolvability (Mathematical logic)  |2 fast  |0 (OCoLC)fst01162046 
776 0 8 |i Print version:  |a Lerman, Manuel.  |t Degrees of Unsolvability : Local and Global Theory.  |d Cambridge : Cambridge University Press, ©2017  |z 9781107168138 
830 0 |a Perspectives in logic. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/9781316717059  |z Full Text (via Cambridge) 
915 |a M 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s e2debd8e-e772-4b6e-9081-9ffc6a5fc0ec  |i 6f84d3fa-fd7d-4f93-8657-869b9c6f1d10 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web