General Recursion Theory : an Axiomatic Approach.

This volume presents a unified and coherent account of the many and various parts of general recursion theory.

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Fenstad, Jens Erik
Format: Electronic eBook
Language:English
Published: Cambridge : Cambridge University Press, 2017.
Series:Perspectives in logic.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 in00000057384
006 m o d
007 cr |||||||||||
008 170422s2017 enk o 000 0 eng d
005 20230831181012.7
035 |a (OCoLC)ceba982452245 
037 |a ceba9781316717073 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDX  |d IDEBK  |d UAB  |d CHVBK  |d OCLCO  |d OCLCF  |d OTZ  |d MERER  |d OCLCQ  |d DEBBG  |d OCLCQ  |d CLU  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 982226311  |a 982337837  |a 982403324  |a 982433405  |a 982542377  |a 982638706  |a 983473663 
020 |a 9781316749012 
020 |a 1316749010 
020 |a 1316752879 
020 |a 9781316752876 
020 |a 9781316717073 
020 |a 1316717070 
020 |z 1107168163 
020 |z 9781107168169 
020 |z 1316754804 
029 1 |a CHNEW  |b 000953021 
035 |a (OCoLC)982452245  |z (OCoLC)982226311  |z (OCoLC)982337837  |z (OCoLC)982403324  |z (OCoLC)982433405  |z (OCoLC)982542377  |z (OCoLC)982638706  |z (OCoLC)983473663 
050 4 |a QA9.6  |b .F467 2016 
049 |a GWRE 
100 1 |a Fenstad, Jens Erik. 
245 1 0 |a General Recursion Theory :  |b an Axiomatic Approach. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2017. 
300 |a 1 online resource (239 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Perspectives in Logic ;  |v v. 10 
588 0 |a Print version record. 
505 0 |6 880-01  |a Cover; Half-title; Series information; Title page; Copyright information; Preface; Author's Preface; Table of contents; Pons Asinorum; Chapter 0 On the Choice of Correct Notions for the General Theory; 0.1 Finite Algorithmic Procedures; 0.2 FAP and Inductive Definability; 0.3 FAP and Computation Theories; 0.4 Platek's Thesis; 0.5 Recent Developments in Inductive Definability; Part A General Theory; Chapter 1 General Theory: Combinatorial Part; 1.1 Basic Definitions; 1.2 Some Computable Functions; 1.5 Inductively Defined Theories; 1.6 A Simple Representation Theorem. 
505 8 |a 8.1 Basic Definitions8.2 Companion Theory; 8.3 Set Recursion and Kleene-Recursion in Higher Types; 8.4 Degrees of Functionals; 8.5 Epilogue; References; Notation; Author Index; Subject Index. 
520 |a This volume presents a unified and coherent account of the many and various parts of general recursion theory. 
650 0 |a Recursion theory. 
650 7 |a Recursion theory.  |2 fast  |0 (OCoLC)fst01091982 
776 0 8 |i Print version:  |a Fenstad, Jens E.  |t General Recursion Theory : An Axiomatic Approach.  |d Cambridge : Cambridge University Press, ©2017  |z 9781107168169 
830 0 |a Perspectives in logic. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/9781316717073  |z Full Text (via Cambridge) 
880 8 |6 505-00/(S  |a 1.7 The First Recursion TheoremChapter 2 General Theory: Subcomputations; 2.1 Subcomputatίons; 2.2 Inductively Defined Theories; 2.3 The First Recursion Theorem; 2.4 Semicomputable Relations; 2.5 Finiteness; 2.6 Extension of Theories; 2.7 Faithful Representation; Part B Finite Theories; Chapter 3 Finite Theories on One Type; 3.1 The Prewellordering Property; 3.2 Spector Theories; 3.3 Spector Theories and Inductive Definability; Chapter 4 Finite Theories on Two Types; 4.1 Computation Theories on Two Types; 4.2 Recursion in a Normal List; 4.3 Selection in Higher Types. 
880 8 |6 505-01/(S  |a 4.4 Computation Theories and Second Order DefinabilityPart C Infinite Theories; Chapter 5 Admissible Prewellorderings; 5.1 Admissible Prewellorderings and Infinite Theories; 5.2 The Characterization Theorem; 5.5 The Imbedding Theorem; 5.4 Spector Theories Over ω; Chapter 6 Degree Structure; 6.1 Basic Notions; 6.2 The Splitting Theorem; 6.3 The Theory Extended; Part D Higher Types; Chapter 7 Computations Over Two Types; 7.1 Computations and Reflection; 7.2 The General Plus-2 and Plus-1 Theorem; 7.3 Characterization in Higher Types; Chapter 8 Set Recursion and Higher Types. 
915 |a M 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s 269d60c3-178a-4a66-ac3d-7ce1b878cc32  |i 214598b2-fe17-43b0-b12a-4fc5097f2828 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web