General Recursion Theory : an Axiomatic Approach.
This volume presents a unified and coherent account of the many and various parts of general recursion theory.
Saved in:
Online Access: |
Full Text (via Cambridge) |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge :
Cambridge University Press,
2017.
|
Series: | Perspectives in logic.
|
Subjects: |
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | in00000057384 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 170422s2017 enk o 000 0 eng d | ||
005 | 20230831181012.7 | ||
035 | |a (OCoLC)ceba982452245 | ||
037 | |a ceba9781316717073 | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCO |d YDX |d IDEBK |d UAB |d CHVBK |d OCLCO |d OCLCF |d OTZ |d MERER |d OCLCQ |d DEBBG |d OCLCQ |d CLU |d OCLCQ |d OCLCO |d OCLCQ | ||
066 | |c (S | ||
019 | |a 982226311 |a 982337837 |a 982403324 |a 982433405 |a 982542377 |a 982638706 |a 983473663 | ||
020 | |a 9781316749012 | ||
020 | |a 1316749010 | ||
020 | |a 1316752879 | ||
020 | |a 9781316752876 | ||
020 | |a 9781316717073 | ||
020 | |a 1316717070 | ||
020 | |z 1107168163 | ||
020 | |z 9781107168169 | ||
020 | |z 1316754804 | ||
029 | 1 | |a CHNEW |b 000953021 | |
035 | |a (OCoLC)982452245 |z (OCoLC)982226311 |z (OCoLC)982337837 |z (OCoLC)982403324 |z (OCoLC)982433405 |z (OCoLC)982542377 |z (OCoLC)982638706 |z (OCoLC)983473663 | ||
050 | 4 | |a QA9.6 |b .F467 2016 | |
049 | |a GWRE | ||
100 | 1 | |a Fenstad, Jens Erik. | |
245 | 1 | 0 | |a General Recursion Theory : |b an Axiomatic Approach. |
260 | |a Cambridge : |b Cambridge University Press, |c 2017. | ||
300 | |a 1 online resource (239 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Perspectives in Logic ; |v v. 10 | |
588 | 0 | |a Print version record. | |
505 | 0 | |6 880-01 |a Cover; Half-title; Series information; Title page; Copyright information; Preface; Author's Preface; Table of contents; Pons Asinorum; Chapter 0 On the Choice of Correct Notions for the General Theory; 0.1 Finite Algorithmic Procedures; 0.2 FAP and Inductive Definability; 0.3 FAP and Computation Theories; 0.4 Platek's Thesis; 0.5 Recent Developments in Inductive Definability; Part A General Theory; Chapter 1 General Theory: Combinatorial Part; 1.1 Basic Definitions; 1.2 Some Computable Functions; 1.5 Inductively Defined Theories; 1.6 A Simple Representation Theorem. | |
505 | 8 | |a 8.1 Basic Definitions8.2 Companion Theory; 8.3 Set Recursion and Kleene-Recursion in Higher Types; 8.4 Degrees of Functionals; 8.5 Epilogue; References; Notation; Author Index; Subject Index. | |
520 | |a This volume presents a unified and coherent account of the many and various parts of general recursion theory. | ||
650 | 0 | |a Recursion theory. | |
650 | 7 | |a Recursion theory. |2 fast |0 (OCoLC)fst01091982 | |
776 | 0 | 8 | |i Print version: |a Fenstad, Jens E. |t General Recursion Theory : An Axiomatic Approach. |d Cambridge : Cambridge University Press, ©2017 |z 9781107168169 |
830 | 0 | |a Perspectives in logic. | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/9781316717073 |z Full Text (via Cambridge) |
880 | 8 | |6 505-00/(S |a 1.7 The First Recursion TheoremChapter 2 General Theory: Subcomputations; 2.1 Subcomputatίons; 2.2 Inductively Defined Theories; 2.3 The First Recursion Theorem; 2.4 Semicomputable Relations; 2.5 Finiteness; 2.6 Extension of Theories; 2.7 Faithful Representation; Part B Finite Theories; Chapter 3 Finite Theories on One Type; 3.1 The Prewellordering Property; 3.2 Spector Theories; 3.3 Spector Theories and Inductive Definability; Chapter 4 Finite Theories on Two Types; 4.1 Computation Theories on Two Types; 4.2 Recursion in a Normal List; 4.3 Selection in Higher Types. | |
880 | 8 | |6 505-01/(S |a 4.4 Computation Theories and Second Order DefinabilityPart C Infinite Theories; Chapter 5 Admissible Prewellorderings; 5.1 Admissible Prewellorderings and Infinite Theories; 5.2 The Characterization Theorem; 5.5 The Imbedding Theorem; 5.4 Spector Theories Over ω; Chapter 6 Degree Structure; 6.1 Basic Notions; 6.2 The Splitting Theorem; 6.3 The Theory Extended; Part D Higher Types; Chapter 7 Computations Over Two Types; 7.1 Computations and Reflection; 7.2 The General Plus-2 and Plus-1 Theorem; 7.3 Characterization in Higher Types; Chapter 8 Set Recursion and Higher Types. | |
915 | |a M | ||
956 | |a Cambridge EBA | ||
956 | |b Cambridge EBA ebooks Complete Collection | ||
998 | |b New collection CUP.ebaebookscomplete | ||
994 | |a 92 |b COD | ||
999 | f | f | |s 269d60c3-178a-4a66-ac3d-7ce1b878cc32 |i 214598b2-fe17-43b0-b12a-4fc5097f2828 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |h Library of Congress classification |i web |