State estimation for robotics / Timothy D. Barfoot, University of Toronto.

A key aspect of robotics today is estimating the state, such as position and orientation, of a robot as it moves through the world. Most robots and autonomous vehicles depend on noisy data from sensors such as cameras or laser rangefinders to navigate in a three-dimensional world. This book presents...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Barfoot, Timothy D., 1973- (Author)
Format: Electronic eBook
Language:English
Published: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2017
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000057986
006 m o d
007 cr |||||||||||
008 170814s2017 enk ob 001 0 eng d
005 20230831181036.4
035 |a (OCoLC)ceba1000443704 
037 |a ceba9781316671528 
040 |a YDX  |b eng  |e pn  |c YDX  |d OCLCO  |d LGG  |d UIU  |d HEBIS  |d UPM  |d OCLCQ  |d OCLCF  |d AFU  |d AU@  |d U3W  |d OTZ  |d LVT  |d MERER  |d OCLCQ  |d K6U  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1042807670 
020 |a 9781316671528  |q (electronic bk.) 
020 |a 1316671526  |q (electronic bk.) 
020 |z 9781107159396 
020 |z 1107159393 
024 8 |a 99973357599 
029 1 |a AU@  |b 000060932631 
035 |a (OCoLC)1000443704  |z (OCoLC)1042807670 
050 4 |a TJ211.35  |b .B37 2017 
049 |a GWRE 
100 1 |a Barfoot, Timothy D.,  |d 1973-  |e author. 
245 1 0 |a State estimation for robotics /  |c Timothy D. Barfoot, University of Toronto. 
264 1 |a Cambridge, United Kingdom ;  |a New York, NY, USA :  |b Cambridge University Press,  |c 2017 
300 |a 1 online resource (xii, 368 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a pt. 1. Estimation Machinery -- pt. 2. Three-Dimensional Machinery -- pt. 3. Applications 
520 |a A key aspect of robotics today is estimating the state, such as position and orientation, of a robot as it moves through the world. Most robots and autonomous vehicles depend on noisy data from sensors such as cameras or laser rangefinders to navigate in a three-dimensional world. This book presents common sensor models and practical advice on how to carry out state estimation for rotations and other state variables. It covers both classical state estimation methods such as the Kalman filter, as well as important modern topics such as batch estimation, the Bayes filter, sigmapoint and particle filters, robust estimation for outlier rejection, and continuous-time trajectory estimation and its connection to Gaussian-process regression. The methods are demonstrated in the context of important applications such as point-cloud alignment, pose-graph relaxation, bundle adjustment, and simultaneous localization and mapping. Students and practitioners of robotics alike will find this a valuable resource. 
650 0 |a Robots  |x Control systems. 
650 0 |a Observers (Control theory)  |x Mathematics. 
650 0 |a Lie groups. 
650 7 |a Lie groups.  |2 fast  |0 (OCoLC)fst00998135 
650 7 |a Robots  |x Control systems.  |2 fast  |0 (OCoLC)fst01099044 
776 0 8 |i Print version:  |a Barfoot, Timothy D., 1973-  |t State estimation for robotics.  |d Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2017  |z 9781107159396  |z 1107159393  |w (DLC) 2017010237  |w (OCoLC)979533933 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/9781316671528  |z Full Text (via Cambridge) 
915 |a - 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s aacda085-3a59-4529-9528-1941c2689454  |i ada1a0cf-0918-420f-817f-0978b3953a47 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web