Stochastic geometry analysis of cellular networks / Bartłomiej Błaszczyszyn, INRIA, Paris, Martin Haenggi, University of Notre Dame, Paul Keeler, Weierstrass Institute for Applied Analysis and Statistics, Sayandev Mukherjee, DOCOMO Innovations, Inc.

Achieve faster and more efficient network design and optimization with this comprehensive guide. Some of the most prominent researchers in the field explain the very latest analytic techniques and results from stochastic geometry for modelling the signal-to-interference-plus-noise ratio (SINR) distr...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Authors: Błaszczyszyn, Bartłomiej, 1967- (Author), Haenggi, Martin (Author), Keeler, Paul, 1981- (Author), Mukherjee, Sayandev, 1970- (Author)
Format: Electronic eBook
Language:English
Published: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2018.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000059927
006 m o d
007 cr |||||||||||
008 180416s2018 enk ob 001 0 eng d
005 20230831181152.6
035 |a (OCoLC)ceba1031309188 
037 |a ceba9781316677339 
040 |a YDX  |b eng  |e pn  |c YDX  |d UIU  |d EBLCP  |d UAB  |d OCLCF  |d MERER  |d OCLCQ  |d STF  |d U3W  |d OTZ  |d WYU  |d G3B  |d S9I  |d YDX  |d OCLCQ  |d UKAHL  |d OCLCO  |d OCLCQ 
019 |a 1030816080  |a 1031342896  |a 1031363045 
020 |a 9781316677339  |q (electronic bk.) 
020 |a 1316677338  |q (electronic bk.) 
020 |z 1107162580 
020 |z 9781107162587 
029 1 |a AU@  |b 000062883859 
035 |a (OCoLC)1031309188  |z (OCoLC)1030816080  |z (OCoLC)1031342896  |z (OCoLC)1031363045 
050 4 |a TK5102.83  |b .B54 2018 
049 |a GWRE 
100 1 |a Błaszczyszyn, Bartłomiej,  |d 1967-  |e author. 
245 1 0 |a Stochastic geometry analysis of cellular networks /  |c Bartłomiej Błaszczyszyn, INRIA, Paris, Martin Haenggi, University of Notre Dame, Paul Keeler, Weierstrass Institute for Applied Analysis and Statistics, Sayandev Mukherjee, DOCOMO Innovations, Inc. 
264 1 |a Cambridge, United Kingdom ;  |a New York, NY, USA :  |b Cambridge University Press,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a Achieve faster and more efficient network design and optimization with this comprehensive guide. Some of the most prominent researchers in the field explain the very latest analytic techniques and results from stochastic geometry for modelling the signal-to-interference-plus-noise ratio (SINR) distribution in heterogeneous cellular networks. This book will help readers to understand the effects of combining different system deployment parameters on key performance indicators such as coverage and capacity, enabling the efficient allocation of simulation resources. In addition to covering results for network models based on the Poisson point process, this book presents recent results for when non-Poisson base station configurations appear Poisson, due to random propagation effects such as fading and shadowing, as well as non-Poisson models for base station configurations, with a focus on determinantal point processes and tractable approximation methods. Theoretical results are illustrated with practical Long-Term Evolution (LTE) applications and compared with real-world deployment results. 
505 0 |a Machine generated contents note: pt. I Stochastic Geometry -- 1. Introduction -- 1.1. The Demand for Ubiquitous Connectivity -- 1.2. Technical Challenges for a Network Operator -- 1.3. The Case for Small-Cell Architectures -- 1.4. Future Wireless Networks Will Be Heterogeneous -- 1.5. Approaches to the Design of Future Wireless Networks -- 1.6. The Case against Pure Simulation-Based Investigation -- 1.7. The Case for an Analytical Approach to HetNet Design -- 1.8. The Stochastic Geometric Approach to HetNet Analysis -- 1.8.1.A preview of the main results in the book -- 1.8.2. Extension to non-Poisson point processes -- 1.8.3. Applications to link-level analysis -- 2. The Role of Stochastic Geometry in HetNet Analysis -- 2.1. The Hexagonal Cellular Concept -- 2.2. Propagation, Fading, and SINR -- 2.3. Base Station Locations Modeled by Point Processes -- 3.A Brief Course in Stochastic Geometry -- 3.1. Purpose -- 3.2. Fundamental Definitions and Notation -- 3.2.1. Definition 
505 0 |a Note continued: 3.2.2. Equivalence of random sets and random measures -- 3.2.3. Distribution of a point process -- 3.2.4. Palm measures -- 3.2.5. Functions of point processes and the Campbell-Mecke theorem -- 3.2.6. Moment measures and factorial moment measures and their densities -- 3.3. Marked Point Processes -- 3.4. The Poisson Point Process and Its Properties -- 3.4.1. Definition -- 3.4.2. Properties -- 3.4.3. The pgfl and the Campbell-Mecke theorem -- 3.5. Alternative Models -- 3.5.1. Determinantal point processes -- 3.5.2. Matern hard-core processes -- 3.5.3. Strauss processes -- 3.5.4. Shot noise Cox processes -- 3.5.5. The Poisson hole process -- 4. Statistics of Received Power at the Typical Location -- 4.1. Modeling Signal Propagation and Cells in Heterogeneus Networks -- 4.1.1. Stationary heterogeneous network with a propagation field -- 4.1.2. Typical network station and typical location in the network -- 4.1.3. Exchange formula 
505 0 |a Note continued: 4.1.4. Shot noise model of all signal powers in the network -- 4.1.5. Service zones or cells -- 4.1.6. Typical cell vs. zero-cell -- 4.1.7. Rate coverage -- 4.1.8. Cell loads -- 4.2. Heterogeneous Poisson Network Seen at the Typical Location -- 4.2.1. Projection process and a propagation invariance -- 4.2.2. Heterogeneous Poisson network -- 4.2.3. Poisson network equivalence -- 4.2.4. Incorporating propagation terms such as transmission powers and antenna gains -- 4.2.5. Intensity measure of a general projection process -- 4.3.Networks Appear Poisson Due to Random Propagation Effects -- 4.3.1. Projection process based on a deterministic configuration of base stations -- 4.3.2. Poisson model approximation -- 4.3.3. Order statistics of signals -- 4.3.4. Fitting the Poisson model -- 4.3.5. Poisson convergence -- 4.3.6. Possible extensions -- 4.4. Bibliographic Notes -- pt. II SINR Analysis -- 5. Downlink SINR: Fundamental Results -- 5.1. General Considerations 
505 0 |a Note continued: 5.1.1. SINR distribution -- 5.1.2. Signal-to-total-interference-plus-noise ratio -- 5.1.3. Choice of the base station -- 5.1.4. Simple and multiple coverage regime -- 5.1.5. Coverage probability exchange formula in the simple regime -- 5.1.6. Increasing model complexity -- 5.2. Basic Results for Poisson Network with Singular Path Loss Model -- 5.2.1. The singular path loss model -- 5.2.2. SINR with respect to the typical station -- 5.2.3. SINR with respect to the strongest station in the simple coverage regime -- 5.2.4. Coverage probability by the closest base station -- 5.2.5. Alternative derivation of coverage probability by the closest base station -- 5.2.6. Coverage probability with shadowing separated from fading -- 5.3. Multiple Coverage in Poisson Network with Singular Path Loss Model -- 5.3.1. Coverage number and k-coverage probability -- 5.3.2. Multiple coverage in heterogeneous network -- 5.3.3. Matrix formulation of the multiple coverage event 
505 0 |a Note continued: 7.1.1. Interference and SIR for the singular path loss model -- 7.1.2. Results for general path loss models -- 7.2. SINR Analysis for the Poisson Network with Advanced Signaling -- 7.2.1. MIMO analysis -- 7.2.2. Distribution of SINR -- 7.2.3.CoMP analysis -- 7.3. Multi-Link SINR Analysis: Area Spectral Efficiency and Energy Efficiency -- 7.3.1. Link-centric vs. cell-centric perspective -- 7.3.2. Performance metrics of interest to operators -- 7.3.3. Spectral efficiency as ergodic capacity -- 8. Extensions to Non-Poisson Models -- 8.1. Non-Poisson Point Processes -- 8.1.1. Motivation -- 8.1.2. Appropriate point processes -- 8.1.3. Choice of the base station and propagation effects -- 8.1.4. Determinantal models -- 8.1.5. Ginibre point process -- 8.1.6. General determinantal point process -- 8.1.7. Cox point processes -- 8.1.8. Neyman-Scott cluster processes -- 8.2. Approximate SIR Analysis for General Networks -- 8.2.1. Motivation 
505 0 |a Note continued: 8.2.2. Accuracy of the SIR distributions compared with real networks -- 8.2.3. ASAPPP -- 8.2.4. Why is ASAPPP so effective? -- 8.2.5. ASAPPP for HetNets -- 8.3. Bibliographic Notes. 
650 0 |a Wireless communication systems  |x Mathematics. 
650 0 |a Stochastic models. 
650 0 |a Stochastic geometry. 
650 7 |a Stochastic geometry.  |2 fast  |0 (OCoLC)fst01133509 
650 7 |a Stochastic models.  |2 fast  |0 (OCoLC)fst01737780 
700 1 |a Haenggi, Martin,  |e author. 
700 1 |a Keeler, Paul,  |d 1981-  |e author. 
700 1 |a Mukherjee, Sayandev,  |d 1970-  |e author. 
776 0 8 |i Print version:  |a Błaszczyszyn, Bartłomiej, 1967-  |t Stochastic geometry analysis of cellular networks.  |d Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2018  |z 1107162580  |z 9781107162587  |w (OCoLC)994359537 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/9781316677339  |z Full Text (via Cambridge) 
915 |a - 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s ac2884db-8676-4f40-9540-934084c3462e  |i a21b1570-f3a1-41af-ae88-6376ca83dab3 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web