Exponential random graph models for social networks : theories, methods, and applications / editors, Dean Lusher, Johan Koskinen, Garry Robbins.

"Exponential random graph models (ERGMs) are a class of statistical models for social networks. They account for the presence (and absence) of network ties and so provide a model for network structure. An ERGM models a given network in terms of small local tie-based structures, such as reciproc...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Other Authors: Lusher, Dean, Koskinen, Johan, Robbins, Garry
Format: Electronic eBook
Language:English
Published: Cambridge : Cambridge University Press, 2013.
Series:Structural analysis in the social sciences ; 35.
Subjects:

MARC

LEADER 00000cam a2200000Ma 4500
001 in00000060366
006 m o d
007 cr |||||||||||
008 120522s2013 enka ob 001 0 eng d
005 20230831181210.9
010 |z  2012021034 
035 |a (OCoLC)ceba1042899491 
037 |a cebaCBO9780511894701 
040 |a STF  |b eng  |e pn  |c STF  |d YDXCP  |d E7B  |d CAMBR  |d IDEBK  |d VLB  |d ZMC  |d IUL  |d OCLCF  |d COCUF  |d OCLCO  |d LOA  |d K6U  |d OCLCQ  |d LVT  |d AU@  |d OCLCQ  |d UKCRE  |d YDX  |d OCLCQ 
019 |a 820434055  |a 1055268388  |a 1056500195  |a 1076783738  |a 1097128023  |a 1153517929  |a 1159027252  |a 1176479252  |a 1303540857  |a 1303656987  |a 1304294010 
020 |a 9781139844321  |q (e-book) 
020 |a 1139844326 
020 |a 9781139844321 
020 |a 9780511894701 
020 |a 0511894708 
020 |z 9780521193566  |q (hardback) 
020 |z 9780521141383  |q (paperback) 
020 |z 0521193567 
020 |z 0521141389 
020 |a 9781139839587  |q (electronic bk.) 
020 |a 1139839586  |q (electronic bk.) 
024 8 |a 40021660676 
029 1 |a CHNEW  |b 000611998 
029 1 |a DEBBG  |b BV041559062 
029 1 |a NZ1  |b 14795343 
035 |a (OCoLC)1042899491  |z (OCoLC)820434055  |z (OCoLC)1055268388  |z (OCoLC)1056500195  |z (OCoLC)1076783738  |z (OCoLC)1097128023  |z (OCoLC)1153517929  |z (OCoLC)1159027252  |z (OCoLC)1176479252  |z (OCoLC)1303540857  |z (OCoLC)1303656987  |z (OCoLC)1304294010 
050 4 |a HM741  |b .E96 2013 
084 |a SOC024000  |2 bisacsh 
049 |a GWRE 
245 0 0 |a Exponential random graph models for social networks :  |b theories, methods, and applications /  |c editors, Dean Lusher, Johan Koskinen, Garry Robbins. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (xxii, 336 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Structural analysis in the social sciences ;  |v 35 
504 |a Includes bibliographical references and index. 
520 |a "Exponential random graph models (ERGMs) are a class of statistical models for social networks. They account for the presence (and absence) of network ties and so provide a model for network structure. An ERGM models a given network in terms of small local tie-based structures, such as reciprocated ties and triangles. A social network can be thought of as being built up of these local patterns of ties, called network configurations xe "network configurations", which correspond to the parameters in the model. Moreover, these configurations can be considered to arise from local social processes, whereby actors in the network form connections in response to other ties in their social environment. ERGMs are a principled statistical approach to modeling social networks. They are theory-driven in that their use requires the researcher to consider the complex, intersecting and indeed potentially competing theoretical reasons why the social ties in the observed network have arisen. For instance, does a given network structure occur due to processes of homophily xe "actor-relation effects:homophily", xe "homophily" \t "see actor-relation effects" reciprocity xe "reciprocity", transitivity xe "transitivity", or indeed a combination of these? By including such parameters together in the one model a researcher can test these effects one against the other, and so infer the social processes that have built the network. Being a statistical model, an ERGM permits inferences about whether, in our network of interest, there are significantly more (or fewer) reciprocated ties, or triangles (for instance), than we would expect"--  |c Provided by publisher. 
505 0 0 |g 1.  |t Introduction /  |r Dean Lusher, Johan Koskinen and Garry Robins --  |g 2,  |t What are exponential random graph models /  |r Garry Robins and Dean Lusher --  |g 3,  |t The formation of social network structure /  |r Dean Lusher and Garry Robins --  |g 4.  |t Simplified account of exponential random graph model as a statistical model /  |r Garry Robins and Dean Lusher --  |g 5,  |t Example of exponential random graph model analysis /  |r Dean Lusher and Garry Robins --  |g 6.  |t Exponential random graph model fundamentals /  |r Johan Koskinene and Galina Daragonova --  |g 7.  |t Dependence graphs and sufficient statistics /  |r Johan Koskinen and Galina Daragonova --  |g 8.  |t Social selection, dyadic covariates, and geospatial effects /  |r Garry Robins and Galina Daragonova --  |g 9.  |t Autologistic actor attribute models /  |r Galina Daragonova and Garry Robins --  |g 10.  |t Exponential random graph model extensions: models for multiple networks and bipartite networks /  |r Peng Wang --  |g 11.  |t 10. Longitudinal models /  |r Tom Snijders and Johan Koskinen --  |t g12.  |t Simulation, estimation, and goodness of fit /  |r Johan Koskinen and Tom Snijders --  |g 13.  |t Illustrations: simulation, estimation and goodness of fit /  |r Garry Robins and Dean Lusher --  |g 14.  |t Personal attitudes, perceived attitudes, and social structures: a social selection model /  |r Dean Lusher and Garry Robins --  |g 15.  |t How to close a hole: exploring alternative closure mechanisms in interorganizational networks /  |r Alessandro Lomi and Francesca Pallotti --  |g 16.  |t Interdependencies between working relations: multivariate ERGMs for advice and satisfaction /  |r Yu Zhao and Olaf Rank --  |g 16.  |t Brain, brawn, or optimism?: structure and correlates of emergent military leadership /  |r Yuval Kalish and Gil Luria --  |g 18.  |t Autologistic actor attribute model analysis of unemployment: dual importance of who you know and where you live /  |r Galina Daragonova and Pip Pattison --  |g 19.  |t Longitudinal changes in face-to-face and text message-mediated friendship networks /  |r Tasuku Igarashi --  |g 20.  |t Differential impact of directors' social and financial capital on corporate interlock formation /  |r Nicholas Harrigan and Matthew Bond --  |g 21.  |t Comparing networks: a structural correspondence between behavioral and recall networks /  |r Eric Quintane --  |g 22.  |t Modeling social networks: next steps /  |r Pip Pattison and Tom Snijders. 
650 0 |a Social networks  |x Mathematical models. 
650 0 |a Social networks  |x Research  |x Graphic methods. 
650 7 |a Social networks  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01122685 
700 1 |a Lusher, Dean. 
700 1 |a Koskinen, Johan. 
700 1 |a Robbins, Garry. 
776 0 8 |i Print version:  |z 9780521193566  |z 0521193567  |w (DLC) 2012021034 
830 0 |a Structural analysis in the social sciences ;  |v 35. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/CBO9780511894701  |z Full Text (via Cambridge) 
915 |a M 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s 8c437ecc-c05a-435e-a4e1-875b35c21118  |i 80c2731a-4a8f-44ba-8d68-907e1df8b5f3 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web