The Black-Scholes-Merton model as an idealization of discrete-time economies / David M. Kreps.

This book examines whether continuous-time models in frictionless financial economies can be well approximated by discrete-time models. It specifically looks to answer the question: in what sense and to what extent does the famous Black-Scholes-Merton (BSM) continuous-time model of financial markets...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Author: Kreps, David M. (Author)
Format: Electronic eBook
Language:English
Published: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019.
Series:Econometric Society monographs ; no. 63.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000063627
006 m o d
007 cr |||||||||||
008 190923t20192019enka ob 001 0 eng d
005 20230831181422.3
035 |a (OCoLC)ceba1120722443 
037 |a ceba9781108626903 
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d OCLCF  |d CAMBR  |d YDXIT  |d COO  |d EBLCP  |d OCLCQ  |d K6U  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781108626903  |q (electronic book) 
020 |a 1108626904  |q (electronic book) 
020 |a 9781108775502  |q (electronic book) 
020 |a 1108775500  |q (electronic book) 
020 |z 9781108486361  |q (hardcover) 
020 |z 1108486363  |q (hardcover) 
020 |z 9781108707657  |q (paperback) 
020 |z 1108707653  |q (paperback) 
029 1 |a AU@  |b 000066132465 
035 |a (OCoLC)1120722443 
050 4 |a HG106  |b .K74 2019 
049 |a GWRE 
100 1 |a Kreps, David M.,  |e author. 
245 1 4 |a The Black-Scholes-Merton model as an idealization of discrete-time economies /  |c David M. Kreps. 
264 1 |a Cambridge, United Kingdom ;  |a New York, NY :  |b Cambridge University Press,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource (xi, 203 pages) :  |b illustrations (black and white) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Econometric Society monographs series ;  |v [63] 
504 |a Includes bibliographical references and indexes. 
588 0 |a Online resource; title from digital title page (viewed on October 24, 2019). 
520 |a This book examines whether continuous-time models in frictionless financial economies can be well approximated by discrete-time models. It specifically looks to answer the question: in what sense and to what extent does the famous Black-Scholes-Merton (BSM) continuous-time model of financial markets idealize more realistic discrete-time models of those markets? While it is well known that the BSM model is an idealization of discrete-time economies where the stock price process is driven by a binomial random walk, it is less known that the BSM model idealizes discrete-time economies whose stock price process is driven by more general random walks. Starting with the basic foundations of discrete-time and continuous-time models, David M. Kreps takes the reader through to this important insight with the goal of lowering the entry barrier for many mainstream financial economists, thus bringing less-technical readers to a better understanding of the connections between BSM and nearby discrete-economies. 
650 0 |a Finance  |x Mathematical models. 
650 0 |a Stocks  |x Prices  |x Mathematical models. 
650 0 |a Discrete-time systems. 
650 7 |a Discrete-time systems.  |2 fast  |0 (OCoLC)fst00894973 
650 7 |a Finance  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00924398 
650 7 |a Stocks  |x Prices  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01133728 
776 0 8 |i Print version:  |z 9781108486361  |z 9781108707657  |w (OCoLC)1120066487 
830 0 |a Econometric Society monographs ;  |v no. 63. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/9781108626903  |z Full Text (via Cambridge) 
915 |a - 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s 9a5dc994-5df3-4ee7-90dd-326201ceac89  |i ea081112-2463-4dc5-902c-36b880c68392 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web