Singularly perturbed methods for nonlinear elliptic problems / Daomin Cao, Shuangjie Peng, Shusen Yan.

This introduction to the singularly perturbed methods in the nonlinear elliptic partial differential equations emphasises the existence and local uniqueness of solutions exhibiting concentration property. The authors avoid using sophisticated estimates and explain the main techniques by thoroughly i...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Cambridge)
Main Authors: Cao, Daomin, 1963- (Author), Peng, Shuangjie, 1968- (Author), Yan, Shusen, 1963- (Author)
Format: Electronic eBook
Language:English
Published: Cambridge : Cambridge University Press, 2021.
Series:Cambridge studies in advanced mathematics ; 191.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000067074
006 m o d
007 cr |||||||||||
008 210210s2021 enk ob 001 0 eng d
005 20230831181745.8
035 |a (OCoLC)ceba1237132127 
037 |a ceba9781108872638 
040 |a CAMBR  |b eng  |e rda  |e pn  |c CAMBR  |d OCLCO  |d SFB  |d OCLCO  |d OCLCF  |d K6U  |d EBLCP  |d YDX  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1251949002  |a 1268237638 
020 |a 9781108872638  |q (electronic bk.) 
020 |a 1108872638  |q (electronic bk.) 
020 |z 9781108836838  |q (hardback) 
020 |z 1108836836 
029 1 |a AU@  |b 000068698599 
035 |a (OCoLC)1237132127  |z (OCoLC)1251949002  |z (OCoLC)1268237638 
050 4 |a QA377  |b .C29 2021 
049 |a GWRE 
100 1 |a Cao, Daomin,  |d 1963-  |e author. 
245 1 0 |a Singularly perturbed methods for nonlinear elliptic problems /  |c Daomin Cao, Shuangjie Peng, Shusen Yan. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2021. 
264 4 |c ©2021 
300 |a 1 online resource (ix, 252 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge studies in advanced mathematics ;  |v 191 
504 |a Includes bibliographical references and index. 
520 |a This introduction to the singularly perturbed methods in the nonlinear elliptic partial differential equations emphasises the existence and local uniqueness of solutions exhibiting concentration property. The authors avoid using sophisticated estimates and explain the main techniques by thoroughly investigating two relatively simple but typical non-compact elliptic problems. Each chapter then progresses to other related problems to help the reader learn more about the general theories developed from singularly perturbed methods. Designed for PhD students and junior mathematicians intending to do their research in the area of elliptic differential equations, the text covers three main topics. The first is the compactness of the minimization sequences, or the Palais-Smale sequences, or a sequence of approximate solutions; the second is the construction of peak or bubbling solutions by using the Lyapunov-Schmidt reduction method; and the third is the local uniqueness of these solutions. 
588 0 |a Online resource; title from digital title page (viewed on February 25, 2021). 
650 0 |a Differential equations, Elliptic. 
650 0 |a Differential equations, Nonlinear. 
650 7 |a Differential equations, Elliptic.  |2 fast  |0 (OCoLC)fst00893458 
650 7 |a Differential equations, Nonlinear.  |2 fast  |0 (OCoLC)fst00893474 
700 1 |a Peng, Shuangjie,  |d 1968-  |e author. 
700 1 |a Yan, Shusen,  |d 1963-  |e author. 
776 0 8 |i Print version:  |z 9781108836838 
830 0 |a Cambridge studies in advanced mathematics ;  |v 191. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1017/9781108872638  |z Full Text (via Cambridge) 
915 |a - 
956 |a Cambridge EBA 
956 |b Cambridge EBA ebooks Complete Collection 
998 |b New collection CUP.ebaebookscomplete 
994 |a 92  |b COD 
999 f f |s 66b33829-aaab-47be-8662-5c6a029d8cf8  |i e86fdf5d-8793-48ad-a065-ec804d0a4747 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |h Library of Congress classification  |i web