Solid-state sensors / Ambarish Paul, Mitradip Bhattacharjee, Ravinder Dahiya.

"This book covers all of the major aspects of the primary constituents of the field of solid-state sensors, including working principles and related theories, sensor materials, classification of respective sensor type, relevant fabrication processes, and suitable applications. The authors explo...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Wiley)
Main Authors: Paul, Ambarish (Author), Bhattacharjee, Mitradip (Author), Dahiya, Ravinder S. (Author)
Format: Electronic eBook
Language:English
Published: Hoboken, New Jersey : Wiley-IEEE Press, [2024]
Series:IEEE Press series on sensors.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000103804
006 m o d
007 cr |||||||||||
008 230828s2024 njua ob 001 0 eng
005 20240102185006.6
010 |a  2023040078 
020 |a 9781119473114  |q electronic book 
020 |a 111947311X  |q electronic book 
020 |a 9781119473077  |q electronic book 
020 |a 1119473071  |q electronic book 
020 |a 9781119473053  |q electronic book 
020 |a 1119473055  |q electronic book 
020 |z 9781119473046  |q hardcover 
024 7 |a 10.1002/9781119473114  |2 doi 
035 |a (OCoLC)wol1396265692 
035 |a (OCoLC)1396265692 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d YDX  |d DG1  |d IEEEE 
042 |a pcc 
049 |a GWRE 
050 0 4 |a TA165  |b .P37 2024 
066 |c (S 
100 1 |a Paul, Ambarish,  |e author.  |0 http://id.loc.gov/authorities/names/no2023098090 
245 1 0 |a Solid-state sensors /  |c Ambarish Paul, Mitradip Bhattacharjee, Ravinder Dahiya. 
264 1 |a Hoboken, New Jersey :  |b Wiley-IEEE Press,  |c [2024] 
300 |a 1 online resource (xviii, 428 pages) :  |b illustrations (chiefly color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IEEE Press series on sensors 
504 |a Includes bibliographical references and index. 
520 |a "This book covers all of the major aspects of the primary constituents of the field of solid-state sensors, including working principles and related theories, sensor materials, classification of respective sensor type, relevant fabrication processes, and suitable applications. The authors explore the fundamentals of sensing phenomena and relevant equations governing the phenomena. The sensor materials section not only discusses the promising materials whose properties have been utilized for sensing action but also predicts future smart materials that have the potential for sensing application. The classification section categorizes sensors into different sub-types and describes their workings, focusing on prominent applications for the readers to realize the benefits of relevant designs. The application section includes an in-depth update of developments in the field of the given sensor type and concludes with challenges in the relevant field of research."--  |c Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on October 11, 2023). 
650 0 |a Detectors.  |0 http://id.loc.gov/authorities/subjects/sh85037291 
700 1 |a Bhattacharjee, Mitradip,  |e author.  |0 http://id.loc.gov/authorities/names/no2023098092 
700 1 |a Dahiya, Ravinder S.,  |e author.  |0 http://id.loc.gov/authorities/names/nb2012023937  |1 http://isni.org/isni/0000000383341320 
776 0 8 |i Print version:  |a Paul, Ambarish.  |t Solid-state sensors  |d Hoboken, New Jersey : Wiley-IEEE Press, [2024]  |z 9781119473046  |w (DLC) 2023040077 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://onlinelibrary.wiley.com/doi/book/10.1002/9781119473114  |z Full Text (via Wiley) 
830 0 |a IEEE Press series on sensors.  |0 http://id.loc.gov/authorities/names/no2020144499 
880 0 |6 505-00/(S  |a About the Authors xv -- Preface xvii -- 1 Introduction 1 -- 1.1 Overview 1 -- 1.1.1 Growth in Solid-State Sensor Market 2 -- 1.1.2 Solid-State Sensors: A Recipe for Smart Sensing Systems 5 -- 1.2 Evolution of Solid-State Sensors 6 -- 1.2.1 Origin and Early Developments in Detection Devices 6 -- 1.2.2 Solid-State Electronics: Post Transistor Era 9 -- 1.2.3 Emergence of New Technologies 12 -- 1.2.3.1 Thin-Film Technology 14 -- 1.2.3.2 Advancements in Micro- and Nanofabrication 14 -- 1.2.3.3 Emergence of Nanotechnology 16 -- 1.2.3.4 Printed Electronics on Flexible Substrates 17 -- 1.2.3.5 Smart Devices with Artificial Intelligence 20 -- 1.2.3.6 IoT-Enabled Sensors 21 -- 1.2.4 Paradigm Shift in Solid-State Sensor Research 22 -- 1.2.4.1 Organic Devices 23 -- 1.2.4.2 Wearable Devices 24 -- 1.2.4.3 Implantable Sensors 25 -- 1.3 Outline 27 -- References 28 -- 2 Classification and Terminology 35 -- 2.1 Sensor Components 35 -- 2.2 Classification of Solid-State Sensors 36 -- 2.3 Sensor Terminology 40 -- 2.3.1 Accuracy 40 -- 2.3.2 Precision 41 -- 2.3.3 Calibration Curve 41 -- 2.3.4 Sensitivity 41 -- 2.3.5 Threshold/Minimum Detectable Limit 42 -- 2.3.6 Null Offset 42 -- 2.3.7 Dynamic Range 42 -- 2.3.8 Nonlinearity 42 -- 2.3.9 Hysteresis 43 -- 2.3.10 Selectivity 43 -- 2.3.11 Repeatability 43 -- 2.3.12 Reproducibility 43 -- 2.3.13 Resolution 43 -- 2.3.14 Stability 43 -- 2.3.15 Noise 44 -- 2.3.16 Response and Recovery Time 44 -- 2.3.17 Drift 45 -- 2.4 Conclusion 45 -- References 45 -- 3 Fabrication Technologies 47 -- 3.1 Introduction 47 -- 3.2 Deposition 48 -- 3.2.1 Physical Vapor Deposition 49 -- 3.2.1.1 Thermal Evaporation 50 -- 3.2.1.2 Sputter Deposition 52 -- 3.2.1.3 Electron-Beam PVD 55 -- 3.2.1.4 Laser Ablation 58 -- 3.2.2 Electroplating 59 -- 3.2.3 Thermal Oxidation 61 -- 3.2.4 Chemical Vapor Deposition 62 -- 3.2.4.1 Atmospheric Pressure Chemical Vapor Deposition 62 -- 3.2.4.2 Low-Pressure Chemical Vapor Deposition 63 -- 3.2.4.3 Plasma-Enhanced Chemical Vapor Deposition 63 -- 3.3 Exposure-Based Lithography Techniques 64 -- 3.3.1 UV Lithography 65 -- 3.3.1.1 Exposure Tool 65 -- 3.3.1.2 Mask 66 -- 3.3.1.3 Photoresist 67 -- 3.3.2 Electron-Beam Lithography 68 -- 3.3.3 X-Ray Lithography 71 -- 3.3.4 Ion-Beam Lithography 71 -- 3.4 Soft Lithography Techniques 72 -- 3.4.1 Particle Replication in Nonwetting Templates 74 -- 3.4.2 Microcontact Printing 75 -- 3.4.3 Microfluidic Patterning 77 -- 3.4.4 Laminar Flow Patterning 79 -- 3.4.5 Step and Flash Imprint Lithography 80 -- 3.4.6 Hydrogel Template 82 -- 3.5 Etching 83 -- 3.5.1 Wet Etching 85 -- 3.5.2 Dry Etching 89 -- 3.6 Doping 90 -- 3.6.1 Diffusion 92 -- 3.6.2 Ion Implantation 94 -- 3.7 Solution Processed Methods 95 -- 3.7.1 Inkjet Printing 95 -- 3.7.2 Drop Dispensing 98 -- 3.7.3 Spray Deposition 100 -- 3.7.4 Screen Printing 101 -- 3.7.5 Tape Casting 103 -- 3.8 Conclusions 105 -- References 106 -- 4 Piezoelectric Sensors 113 -- 4.1 Overview 113 -- 4.2 Theory of Piezoelectricity 115 -- 4.2.1 Direct Piezoelectric Effect 115 -- 4.2.2 Poling 116 -- 4.2.3 Static Piezoelectricity 118 -- 4.2.4 Anisotropic Crystals 118 -- 4.3 Basic Mathematical Formulation 119 -- 4.3.1 Contribution of Piezoelectric Effect to Elastic constant C 120 -- 4.3.2 Contribution of Piezoelectric Effect to Dielectric Constant ε 121 -- 4.4 Constitutive Equations 122 -- 4.4.1 Piezoelectric 122 -- 4.4.2 Sensor Equations for Electrical Circuits 124 -- 4.4.3 Piezoelectric Constants for a Material 126 -- 4.4.3.1 Piezoelectric Strain Constant d 127 -- 4.4.3.2 Piezoelectric Voltage Coefficient g 127 -- 4.4.3.3 Piezoelectric Coupling Coefficients k 128 -- 4.4.3.4 Mechanical Quality Factor QM 128 -- 4.4.3.5 Acoustic Impedance 129 -- 4.4.3.6 Aging Rate 129 -- 4.4.3.7 Dielectric Constants KTij 129 -- 4.5 Piezoelectric Materials 130 -- 4.5.1 Natural Piezoelectric Materials 131 -- 4.5.1.1 Piezoelectric Single Crystals 131 -- 4.5.1.2 Organic Materials 133 -- 4.5.1.3 Biopiezoelectric Materials 138 -- 4.5.2 Man-made/Synthetic Piezoelectric Material 141 -- 4.5.2.1 Polymers 141 -- 4.5.2.2 Ceramics 143 -- 4.5.2.3 Piezoelectric Composites 146 -- 4.5.2.4 Thin Film 150 -- 4.5.2.5 Choice of Piezoelectric Material for Desired Applications 151 -- 4.6 Uses of Piezoelectric Materials 151 -- 4.6.1 Piezoelectric Transducer 152 -- 4.6.2 Piezoelectric Actuator 153 -- 4.6.3 Piezoelectric Generator 155 -- 4.7 Piezoelectric Transducers as Sensors 157 -- 4.7.1 Pressure Sensor 157 -- 4.7.2 Accelerometer 158 -- 4.7.3 Acoustic Sensor 159 -- 4.8 Design of Piezoelectric Devices 163 -- 4.8.1 Orientation of Piezo Crystals 163 -- 4.8.2 Piezo Stacks 164 -- 4.8.3 Bimorph Architecture 166 -- 4.9 Application of Piezoelectric Sensors 167 -- 4.9.1 Industrial Applications 167 -- 4.9.1.1 Engine Knock Sensors 167 -- 4.9.1.2 Tactile Sensors 168 -- 4.9.1.3 Piezoelectric Motors 169 -- 4.9.1.4 Sonar 171 -- 4.9.2 Consumer Electronics 172 -- 4.9.2.1 Piezoelectric Igniters 172 -- 4.9.2.2 Drop on Demand Piezoelectric Printers 172 -- 4.9.2.3 Speakers 173 -- 4.9.2.4 Other Daily Use Products 173 -- 4.9.3 Medical Applications 174 -- 4.9.3.1 Ultrasound Imaging 174 -- 4.9.3.2 Surgery and Ultrasound Procedures 175 -- 4.9.3.3 Wound and Bone Fracture Healing 175 -- 4.9.4 Defense Applications 176 -- 4.9.4.1 Micro Robotics 176 -- 4.9.4.2 Laser-Guided Bullets and Missiles 178 -- 4.9.5 Musical Applications 179 -- 4.9.5.1 Piezoelectric Pickups for Instruments 179 -- 4.9.5.2 Microphones and Ear Pieces 179 -- 4.9.6 Other Applications 180 -- 4.9.6.1 Energy Harvesters 180 -- 4.9.6.2 Sports-Tennis Racquets 184 -- 4.10 Conclusions 184 -- References 188 -- 5 Capacitive Sensors 193 -- 5.1 Overview 193 -- 5.1.1 A Capacitor 194 -- 5.1.2 Capacitance of a Capacitor 195 -- 5.2 Sensor Construction 196 -- 5.2.1 Overlapping Electrode Area A 196 -- 5.2.2 Dielectric Thickness d 197 -- 5.2.3 Dielectric Material 199 -- 5.2.4 Parallel Fingers and Fringing Fields 201 -- 5.3 Sensor Architecture 203 -- 5.3.1 Mixed Dielectrics 203 -- 5.3.2 Multielectrode Capacitor 207 -- 5.3.3 Geometry 209 -- 5.4 Classifications of Capacitive Sensors 211 -- 5.4.1 Displacement Capacitive Sensor 211 -- 5.4.2 Overlapping Area Variation Based Capacitive Sensor 213 -- 5.4.3 Effective Dielectric Permittivity Variation Based Capacitive Sensor 214 -- 5.4.4 Fringing Field Capacitive Sensor 218 -- 5.5 Flexible Capacitive Sensors 219 -- 5.6 Applications 221 -- 5.6.1 Motion Detection 221 -- 5.6.1.1 Displacement Motion (z-Direction) 221 -- 5.6.1.2 Shear Motion (x Direction) 221 -- 5.6.1.3 Tilt Sensor 221 -- 5.6.1.4 Rotary Motion Sensor 222 -- 5.6.1.5 Finger Position (2D, x-y Direction) 222 -- 5.6.2 Pressure 222 -- 5.6.3 Liquid Level 223 -- 5.6.4 Spacing 223 -- 5.6.5 Scanned Multiplate Sensor 223 -- 5.6.6 Thickness Measurement 223 -- 5.6.7 Ice Detector 223 -- 5.6.8 Shaft Angle or Linear Position 223 -- 5.6.9 Lamp Dimmer Switch 223 -- 5.6.10 Key Switch 223 -- 5.6.11 Limit Switch 224 -- 5.6.12 Accelerometers 224 -- 5.6.13 Soil Moisture Measurement 224 -- 5.7 Prospects and Limitations 224 -- 5.7.1 Prospects 224 -- 5.7.2 Limitations 224 -- References 226 -- 6 Chemical Sensors 233 -- 6.1 Introduction 233 -- 6.1.1 Overview 233 -- 6.1.2 Global Limelight 237 -- 6.1.3 Evolution of Chemical Sensors 237 -- 6.1.4 Requirements for Chemical Sensors 240 -- 6.1.4.1 Selectivity 240 -- 6.1.4.2 Stability 240 -- 6.1.4.3 Sensitivity 241 -- 6.1.4.4 Response Time 241 -- 6.1.4.5 Limit of Detection 241 -- 6.2 Materials for Chemical Sensing 241 -- 6.2.1 Metal Oxides 241 -- 6.2.1.1 Types of Metal Oxides 242 -- 6.2.1.2 Chemical Sensing Mechanism 243 -- 6.2.1.3 Metal Oxide Nanoparticles and Films as Sensor Materials 244 -- 6.2.2 Honeycomb Structured Materials 245 -- 6.2.2.1 Graphene 246 -- 6.2.2.2 Carbon Nanotubes 248 -- 6.2.2.3 Other 2D Materials 250 -- 6.2.3 Biopolymers 251 -- 6.2.3.1 On the Basis of Type 252 -- 6.2.3.2 On the Basis of Origin 255 -- 6.2.3.3 On the Basis of Monomeric Units 261 -- 6.2.4 Functionalization 265 -- 6.2.4.1 Covalent Functionalization 266 -- 6.2.4.2 Noncovalent Functionalization 268 -- 6.2.5 Biocomposites 270 -- 6.3 Architectures in Chemical Sensors 272 -- 6.3.1 Chemiresistors 272 -- 6.3.2 ChemFET 275 -- 6.4 Applications 277 -- 6.4.1 Gas Sensors 277 -- 6.4.2 Environmental Sensors 278 -- 6.4.2.1 Pollutants/Aerosols Sensors 279 -- 6.4.2.2 Water Quality Monitoring Sensors 281 -- 6.4.2.3 Humidity Detectors 282 -- 6.4.2.4 UV Radiation Exposure Monitoring 283 -- 6.4.3 Biomolecule Sensors 284 -- 6.4.4 Food Quality Monitoring 284 -- 6.4.4.1 Relative  
880 0 |a Humidity Monitoring 284 -- 6.4.4.2 Gas Monitoring 285 -- 6.4.4.3 Temperature Monitoring 285 -- 6.4.4.4 Presence of Toxic Metals 286 -- 6.4.5 Water Quality Management in Public Pools 286 -- 6.4.6 Health Monitoring 287 -- 6.4.7 Defense and Security 288 -- 6.5 Conclusions 290 -- References 293 -- 7 Optical Sensors 309 -- 7.1 Introduction 309 -- 7.2 Classifications of Optical Properties 311 -- 7.2.1 Absorbance 311 -- 7.2.2 Reflectance 312 -- 7.2.3 Light Scattering 312 -- 7.2.4 Luminescence 314 -- 7.2.5 Fluorescence 314 -- 7.2.6 Circular Dichroism 315 -- 7.2.7 Z-Scan Technique 317 -- 7.2.8 Fr̲ster Resonance Energy Transfer 317 -- 7.3 Materials for Optical Sensing 319 -- 7.3.1 Metal Oxide Materials 319 -- 7.3.2 Polymer Materials 319 -- 7.3.3 Carbon Materials 320 -- 7.4 Optical Techniques for Sensing 320 -- 7.4.1 SPR-Based Detection 321 -- 7.4.2 Nanostructure Aggregation-Mediated Detection 323 -- 7.4.3 Micro/Nanofiber-Based Detection 323 -- 7.4.4 Colorimetric Sensing 324 -- 7.4.5 Spectroscopy Techniques Associated with Sensing 325 -- 7.4.5.1 Raman Spectroscopy 326 -- 7.4.5.2 Luminescence Spectroscopy 326 -- 7.4.5.3 Absorption Spectroscopy 326 -- 7.5 Fabrication Technique of Optical Sensors 327 -- 7.5.1 Solution Process 327 -- 7.5.2 Inkjet Printing 328 -- 7.5.3 Screen Printing 328 -- 7.6 Applications of Optical Sens ... 
915 |a - 
944 |a MARS - RDA ENRICHED 
956 |a Wiley Online Library eBooks 
956 |b Wiley Online Library: Complete oBooks 
994 |a 92  |b COD 
998 |b Added to collection wiley.ebooks 
999 f f |s 877d5e5c-f6ec-4818-9cc4-fb6869e9731d  |i 6ea05f9d-c54c-4599-9e69-8d95eaa81d15 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e TA165 .P37 2024  |h Library of Congress classification  |i web