Solid-state sensors / Ambarish Paul, Mitradip Bhattacharjee, Ravinder Dahiya.

"This book covers all of the major aspects of the primary constituents of the field of solid-state sensors, including working principles and related theories, sensor materials, classification of respective sensor type, relevant fabrication processes, and suitable applications. The authors explo...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Wiley)
Main Authors: Paul, Ambarish (Author), Bhattacharjee, Mitradip (Author), Dahiya, Ravinder S. (Author)
Format: Electronic eBook
Language:English
Published: Hoboken, New Jersey : Wiley-IEEE Press, [2024]
Series:IEEE Press series on sensors.
Subjects:
Table of Contents:
  • About the Authors xv
  • Preface xvii
  • 1 Introduction 1
  • 1.1 Overview 1
  • 1.1.1 Growth in Solid-State Sensor Market 2
  • 1.1.2 Solid-State Sensors: A Recipe for Smart Sensing Systems 5
  • 1.2 Evolution of Solid-State Sensors 6
  • 1.2.1 Origin and Early Developments in Detection Devices 6
  • 1.2.2 Solid-State Electronics: Post Transistor Era 9
  • 1.2.3 Emergence of New Technologies 12
  • 1.2.3.1 Thin-Film Technology 14
  • 1.2.3.2 Advancements in Micro- and Nanofabrication 14
  • 1.2.3.3 Emergence of Nanotechnology 16
  • 1.2.3.4 Printed Electronics on Flexible Substrates 17
  • 1.2.3.5 Smart Devices with Artificial Intelligence 20
  • 1.2.3.6 IoT-Enabled Sensors 21
  • 1.2.4 Paradigm Shift in Solid-State Sensor Research 22
  • 1.2.4.1 Organic Devices 23
  • 1.2.4.2 Wearable Devices 24
  • 1.2.4.3 Implantable Sensors 25
  • 1.3 Outline 27
  • References 28
  • 2 Classification and Terminology 35
  • 2.1 Sensor Components 35
  • 2.2 Classification of Solid-State Sensors 36
  • 2.3 Sensor Terminology 40
  • 2.3.1 Accuracy 40
  • 2.3.2 Precision 41
  • 2.3.3 Calibration Curve 41
  • 2.3.4 Sensitivity 41
  • 2.3.5 Threshold/Minimum Detectable Limit 42
  • 2.3.6 Null Offset 42
  • 2.3.7 Dynamic Range 42
  • 2.3.8 Nonlinearity 42
  • 2.3.9 Hysteresis 43
  • 2.3.10 Selectivity 43
  • 2.3.11 Repeatability 43
  • 2.3.12 Reproducibility 43
  • 2.3.13 Resolution 43
  • 2.3.14 Stability 43
  • 2.3.15 Noise 44
  • 2.3.16 Response and Recovery Time 44
  • 2.3.17 Drift 45
  • 2.4 Conclusion 45
  • References 45
  • 3 Fabrication Technologies 47
  • 3.1 Introduction 47
  • 3.2 Deposition 48
  • 3.2.1 Physical Vapor Deposition 49
  • 3.2.1.1 Thermal Evaporation 50
  • 3.2.1.2 Sputter Deposition 52
  • 3.2.1.3 Electron-Beam PVD 55
  • 3.2.1.4 Laser Ablation 58
  • 3.2.2 Electroplating 59
  • 3.2.3 Thermal Oxidation 61
  • 3.2.4 Chemical Vapor Deposition 62
  • 3.2.4.1 Atmospheric Pressure Chemical Vapor Deposition 62
  • 3.2.4.2 Low-Pressure Chemical Vapor Deposition 63
  • 3.2.4.3 Plasma-Enhanced Chemical Vapor Deposition 63
  • 3.3 Exposure-Based Lithography Techniques 64
  • 3.3.1 UV Lithography 65
  • 3.3.1.1 Exposure Tool 65
  • 3.3.1.2 Mask 66
  • 3.3.1.3 Photoresist 67
  • 3.3.2 Electron-Beam Lithography 68
  • 3.3.3 X-Ray Lithography 71
  • 3.3.4 Ion-Beam Lithography 71
  • 3.4 Soft Lithography Techniques 72
  • 3.4.1 Particle Replication in Nonwetting Templates 74
  • 3.4.2 Microcontact Printing 75
  • 3.4.3 Microfluidic Patterning 77
  • 3.4.4 Laminar Flow Patterning 79
  • 3.4.5 Step and Flash Imprint Lithography 80
  • 3.4.6 Hydrogel Template 82
  • 3.5 Etching 83
  • 3.5.1 Wet Etching 85
  • 3.5.2 Dry Etching 89
  • 3.6 Doping 90
  • 3.6.1 Diffusion 92
  • 3.6.2 Ion Implantation 94
  • 3.7 Solution Processed Methods 95
  • 3.7.1 Inkjet Printing 95
  • 3.7.2 Drop Dispensing 98
  • 3.7.3 Spray Deposition 100
  • 3.7.4 Screen Printing 101
  • 3.7.5 Tape Casting 103
  • 3.8 Conclusions 105
  • References 106
  • 4 Piezoelectric Sensors 113
  • 4.1 Overview 113
  • 4.2 Theory of Piezoelectricity 115
  • 4.2.1 Direct Piezoelectric Effect 115
  • 4.2.2 Poling 116
  • 4.2.3 Static Piezoelectricity 118
  • 4.2.4 Anisotropic Crystals 118
  • 4.3 Basic Mathematical Formulation 119
  • 4.3.1 Contribution of Piezoelectric Effect to Elastic constant C 120
  • 4.3.2 Contribution of Piezoelectric Effect to Dielectric Constant ε 121
  • 4.4 Constitutive Equations 122
  • 4.4.1 Piezoelectric 122
  • 4.4.2 Sensor Equations for Electrical Circuits 124
  • 4.4.3 Piezoelectric Constants for a Material 126
  • 4.4.3.1 Piezoelectric Strain Constant d 127
  • 4.4.3.2 Piezoelectric Voltage Coefficient g 127
  • 4.4.3.3 Piezoelectric Coupling Coefficients k 128
  • 4.4.3.4 Mechanical Quality Factor QM 128
  • 4.4.3.5 Acoustic Impedance 129
  • 4.4.3.6 Aging Rate 129
  • 4.4.3.7 Dielectric Constants KTij 129
  • 4.5 Piezoelectric Materials 130
  • 4.5.1 Natural Piezoelectric Materials 131
  • 4.5.1.1 Piezoelectric Single Crystals 131
  • 4.5.1.2 Organic Materials 133
  • 4.5.1.3 Biopiezoelectric Materials 138
  • 4.5.2 Man-made/Synthetic Piezoelectric Material 141
  • 4.5.2.1 Polymers 141
  • 4.5.2.2 Ceramics 143
  • 4.5.2.3 Piezoelectric Composites 146
  • 4.5.2.4 Thin Film 150
  • 4.5.2.5 Choice of Piezoelectric Material for Desired Applications 151
  • 4.6 Uses of Piezoelectric Materials 151
  • 4.6.1 Piezoelectric Transducer 152
  • 4.6.2 Piezoelectric Actuator 153
  • 4.6.3 Piezoelectric Generator 155
  • 4.7 Piezoelectric Transducers as Sensors 157
  • 4.7.1 Pressure Sensor 157
  • 4.7.2 Accelerometer 158
  • 4.7.3 Acoustic Sensor 159
  • 4.8 Design of Piezoelectric Devices 163
  • 4.8.1 Orientation of Piezo Crystals 163
  • 4.8.2 Piezo Stacks 164
  • 4.8.3 Bimorph Architecture 166
  • 4.9 Application of Piezoelectric Sensors 167
  • 4.9.1 Industrial Applications 167
  • 4.9.1.1 Engine Knock Sensors 167
  • 4.9.1.2 Tactile Sensors 168
  • 4.9.1.3 Piezoelectric Motors 169
  • 4.9.1.4 Sonar 171
  • 4.9.2 Consumer Electronics 172
  • 4.9.2.1 Piezoelectric Igniters 172
  • 4.9.2.2 Drop on Demand Piezoelectric Printers 172
  • 4.9.2.3 Speakers 173
  • 4.9.2.4 Other Daily Use Products 173
  • 4.9.3 Medical Applications 174
  • 4.9.3.1 Ultrasound Imaging 174
  • 4.9.3.2 Surgery and Ultrasound Procedures 175
  • 4.9.3.3 Wound and Bone Fracture Healing 175
  • 4.9.4 Defense Applications 176
  • 4.9.4.1 Micro Robotics 176
  • 4.9.4.2 Laser-Guided Bullets and Missiles 178
  • 4.9.5 Musical Applications 179
  • 4.9.5.1 Piezoelectric Pickups for Instruments 179
  • 4.9.5.2 Microphones and Ear Pieces 179
  • 4.9.6 Other Applications 180
  • 4.9.6.1 Energy Harvesters 180
  • 4.9.6.2 Sports-Tennis Racquets 184
  • 4.10 Conclusions 184
  • References 188
  • 5 Capacitive Sensors 193
  • 5.1 Overview 193
  • 5.1.1 A Capacitor 194
  • 5.1.2 Capacitance of a Capacitor 195
  • 5.2 Sensor Construction 196
  • 5.2.1 Overlapping Electrode Area A 196
  • 5.2.2 Dielectric Thickness d 197
  • 5.2.3 Dielectric Material 199
  • 5.2.4 Parallel Fingers and Fringing Fields 201
  • 5.3 Sensor Architecture 203
  • 5.3.1 Mixed Dielectrics 203
  • 5.3.2 Multielectrode Capacitor 207
  • 5.3.3 Geometry 209
  • 5.4 Classifications of Capacitive Sensors 211
  • 5.4.1 Displacement Capacitive Sensor 211
  • 5.4.2 Overlapping Area Variation Based Capacitive Sensor 213
  • 5.4.3 Effective Dielectric Permittivity Variation Based Capacitive Sensor 214
  • 5.4.4 Fringing Field Capacitive Sensor 218
  • 5.5 Flexible Capacitive Sensors 219
  • 5.6 Applications 221
  • 5.6.1 Motion Detection 221
  • 5.6.1.1 Displacement Motion (z-Direction) 221
  • 5.6.1.2 Shear Motion (x Direction) 221
  • 5.6.1.3 Tilt Sensor 221
  • 5.6.1.4 Rotary Motion Sensor 222
  • 5.6.1.5 Finger Position (2D, x-y Direction) 222
  • 5.6.2 Pressure 222
  • 5.6.3 Liquid Level 223
  • 5.6.4 Spacing 223
  • 5.6.5 Scanned Multiplate Sensor 223
  • 5.6.6 Thickness Measurement 223
  • 5.6.7 Ice Detector 223
  • 5.6.8 Shaft Angle or Linear Position 223
  • 5.6.9 Lamp Dimmer Switch 223
  • 5.6.10 Key Switch 223
  • 5.6.11 Limit Switch 224
  • 5.6.12 Accelerometers 224
  • 5.6.13 Soil Moisture Measurement 224
  • 5.7 Prospects and Limitations 224
  • 5.7.1 Prospects 224
  • 5.7.2 Limitations 224
  • References 226
  • 6 Chemical Sensors 233
  • 6.1 Introduction 233
  • 6.1.1 Overview 233
  • 6.1.2 Global Limelight 237
  • 6.1.3 Evolution of Chemical Sensors 237
  • 6.1.4 Requirements for Chemical Sensors 240
  • 6.1.4.1 Selectivity 240
  • 6.1.4.2 Stability 240
  • 6.1.4.3 Sensitivity 241
  • 6.1.4.4 Response Time 241
  • 6.1.4.5 Limit of Detection 241
  • 6.2 Materials for Chemical Sensing 241
  • 6.2.1 Metal Oxides 241
  • 6.2.1.1 Types of Metal Oxides 242
  • 6.2.1.2 Chemical Sensing Mechanism 243
  • 6.2.1.3 Metal Oxide Nanoparticles and Films as Sensor Materials 244
  • 6.2.2 Honeycomb Structured Materials 245
  • 6.2.2.1 Graphene 246
  • 6.2.2.2 Carbon Nanotubes 248
  • 6.2.2.3 Other 2D Materials 250
  • 6.2.3 Biopolymers 251
  • 6.2.3.1 On the Basis of Type 252
  • 6.2.3.2 On the Basis of Origin 255
  • 6.2.3.3 On the Basis of Monomeric Units 261
  • 6.2.4 Functionalization 265
  • 6.2.4.1 Covalent Functionalization 266
  • 6.2.4.2 Noncovalent Functionalization 268
  • 6.2.5 Biocomposites 270
  • 6.3 Architectures in Chemical Sensors 272
  • 6.3.1 Chemiresistors 272
  • 6.3.2 ChemFET 275
  • 6.4 Applications 277
  • 6.4.1 Gas Sensors 277
  • 6.4.2 Environmental Sensors 278
  • 6.4.2.1 Pollutants/Aerosols Sensors 279
  • 6.4.2.2 Water Quality Monitoring Sensors 281
  • 6.4.2.3 Humidity Detectors 282
  • 6.4.2.4 UV Radiation Exposure Monitoring 283
  • 6.4.3 Biomolecule Sensors 284
  • 6.4.4 Food Quality Monitoring 284
  • 6.4.4.1 Relative